riasharma commited on
Commit
7c5e1a3
·
1 Parent(s): 2f3bdf8

End of training

Browse files
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: layoutlm-funsd
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # layoutlm-funsd
15
+
16
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.6794
19
+ - Answer: {'precision': 0.7050592034445641, 'recall': 0.8096415327564895, 'f1': 0.7537399309551209, 'number': 809}
20
+ - Header: {'precision': 0.2971014492753623, 'recall': 0.3445378151260504, 'f1': 0.31906614785992216, 'number': 119}
21
+ - Question: {'precision': 0.7856502242152467, 'recall': 0.8225352112676056, 'f1': 0.8036697247706422, 'number': 1065}
22
+ - Overall Precision: 0.7204
23
+ - Overall Recall: 0.7888
24
+ - Overall F1: 0.7531
25
+ - Overall Accuracy: 0.8043
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 3e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 8
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 15
51
+ - mixed_precision_training: Native AMP
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 1.7235 | 1.0 | 10 | 1.5460 | {'precision': 0.024602026049204053, 'recall': 0.021013597033374538, 'f1': 0.02266666666666667, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4123076923076923, 'recall': 0.2516431924882629, 'f1': 0.31253644314868806, 'number': 1065} | 0.2125 | 0.1430 | 0.1710 | 0.3788 |
58
+ | 1.407 | 2.0 | 20 | 1.2205 | {'precision': 0.15948777648428406, 'recall': 0.16934487021013597, 'f1': 0.1642685851318945, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4168994413407821, 'recall': 0.5605633802816902, 'f1': 0.4781738085702843, 'number': 1065} | 0.3197 | 0.3683 | 0.3423 | 0.5851 |
59
+ | 1.0795 | 3.0 | 30 | 0.9267 | {'precision': 0.510934393638171, 'recall': 0.6353522867737948, 'f1': 0.5663911845730027, 'number': 809} | {'precision': 0.1111111111111111, 'recall': 0.04201680672268908, 'f1': 0.06097560975609755, 'number': 119} | {'precision': 0.5874476987447699, 'recall': 0.6591549295774648, 'f1': 0.6212389380530974, 'number': 1065} | 0.5436 | 0.6126 | 0.5761 | 0.7163 |
60
+ | 0.8244 | 4.0 | 40 | 0.7676 | {'precision': 0.6219758064516129, 'recall': 0.7626699629171817, 'f1': 0.6851749028317601, 'number': 809} | {'precision': 0.2191780821917808, 'recall': 0.13445378151260504, 'f1': 0.16666666666666669, 'number': 119} | {'precision': 0.6691666666666667, 'recall': 0.7539906103286385, 'f1': 0.7090507726269316, 'number': 1065} | 0.6340 | 0.7205 | 0.6745 | 0.7652 |
61
+ | 0.6702 | 5.0 | 50 | 0.7059 | {'precision': 0.6361848574237955, 'recall': 0.799752781211372, 'f1': 0.7086527929901425, 'number': 809} | {'precision': 0.25773195876288657, 'recall': 0.21008403361344538, 'f1': 0.23148148148148145, 'number': 119} | {'precision': 0.7138018628281118, 'recall': 0.7915492957746478, 'f1': 0.7506678539626003, 'number': 1065} | 0.6601 | 0.7602 | 0.7066 | 0.7714 |
62
+ | 0.5695 | 6.0 | 60 | 0.6803 | {'precision': 0.6496424923391215, 'recall': 0.7861557478368356, 'f1': 0.7114093959731544, 'number': 809} | {'precision': 0.25, 'recall': 0.2184873949579832, 'f1': 0.23318385650224216, 'number': 119} | {'precision': 0.7203098106712564, 'recall': 0.7859154929577464, 'f1': 0.7516838796587336, 'number': 1065} | 0.6677 | 0.7521 | 0.7074 | 0.7823 |
63
+ | 0.5039 | 7.0 | 70 | 0.6660 | {'precision': 0.6928034371643395, 'recall': 0.7972805933250927, 'f1': 0.7413793103448275, 'number': 809} | {'precision': 0.2222222222222222, 'recall': 0.2689075630252101, 'f1': 0.24334600760456274, 'number': 119} | {'precision': 0.7471466198419666, 'recall': 0.7990610328638498, 'f1': 0.7722323049001815, 'number': 1065} | 0.6902 | 0.7667 | 0.7264 | 0.7893 |
64
+ | 0.4396 | 8.0 | 80 | 0.6420 | {'precision': 0.6763485477178424, 'recall': 0.8059332509270705, 'f1': 0.7354765933446138, 'number': 809} | {'precision': 0.23484848484848486, 'recall': 0.2605042016806723, 'f1': 0.24701195219123506, 'number': 119} | {'precision': 0.7559523809523809, 'recall': 0.8347417840375587, 'f1': 0.7933958054439983, 'number': 1065} | 0.6919 | 0.7888 | 0.7372 | 0.7965 |
65
+ | 0.3747 | 9.0 | 90 | 0.6437 | {'precision': 0.6881606765327696, 'recall': 0.8046971569839307, 'f1': 0.7418803418803418, 'number': 809} | {'precision': 0.22535211267605634, 'recall': 0.2689075630252101, 'f1': 0.24521072796934865, 'number': 119} | {'precision': 0.7732506643046945, 'recall': 0.819718309859155, 'f1': 0.7958067456700091, 'number': 1065} | 0.7018 | 0.7807 | 0.7392 | 0.7979 |
66
+ | 0.3415 | 10.0 | 100 | 0.6580 | {'precision': 0.69989281886388, 'recall': 0.8071693448702101, 'f1': 0.7497129735935705, 'number': 809} | {'precision': 0.23076923076923078, 'recall': 0.25210084033613445, 'f1': 0.24096385542168675, 'number': 119} | {'precision': 0.7621527777777778, 'recall': 0.8244131455399061, 'f1': 0.7920613441587732, 'number': 1065} | 0.7047 | 0.7832 | 0.7419 | 0.8022 |
67
+ | 0.3206 | 11.0 | 110 | 0.6671 | {'precision': 0.7009544008483564, 'recall': 0.8170580964153276, 'f1': 0.754566210045662, 'number': 809} | {'precision': 0.2624113475177305, 'recall': 0.31092436974789917, 'f1': 0.2846153846153846, 'number': 119} | {'precision': 0.7675628794449263, 'recall': 0.8309859154929577, 'f1': 0.7980162308385933, 'number': 1065} | 0.7076 | 0.7943 | 0.7485 | 0.7997 |
68
+ | 0.2974 | 12.0 | 120 | 0.6651 | {'precision': 0.7023809523809523, 'recall': 0.8022249690976514, 'f1': 0.7489901904212348, 'number': 809} | {'precision': 0.3, 'recall': 0.35294117647058826, 'f1': 0.3243243243243243, 'number': 119} | {'precision': 0.7784697508896797, 'recall': 0.8215962441314554, 'f1': 0.7994518044769301, 'number': 1065} | 0.7157 | 0.7858 | 0.7491 | 0.8040 |
69
+ | 0.2809 | 13.0 | 130 | 0.6796 | {'precision': 0.7013669821240799, 'recall': 0.8244746600741656, 'f1': 0.7579545454545454, 'number': 809} | {'precision': 0.273972602739726, 'recall': 0.33613445378151263, 'f1': 0.3018867924528302, 'number': 119} | {'precision': 0.770999115826702, 'recall': 0.8187793427230047, 'f1': 0.7941712204007287, 'number': 1065} | 0.7087 | 0.7923 | 0.7482 | 0.8014 |
70
+ | 0.2664 | 14.0 | 140 | 0.6777 | {'precision': 0.6993534482758621, 'recall': 0.8022249690976514, 'f1': 0.7472654001151412, 'number': 809} | {'precision': 0.2826086956521739, 'recall': 0.3277310924369748, 'f1': 0.3035019455252918, 'number': 119} | {'precision': 0.785204991087344, 'recall': 0.8272300469483568, 'f1': 0.8056698673982624, 'number': 1065} | 0.7171 | 0.7873 | 0.7505 | 0.8025 |
71
+ | 0.2685 | 15.0 | 150 | 0.6794 | {'precision': 0.7050592034445641, 'recall': 0.8096415327564895, 'f1': 0.7537399309551209, 'number': 809} | {'precision': 0.2971014492753623, 'recall': 0.3445378151260504, 'f1': 0.31906614785992216, 'number': 119} | {'precision': 0.7856502242152467, 'recall': 0.8225352112676056, 'f1': 0.8036697247706422, 'number': 1065} | 0.7204 | 0.7888 | 0.7531 | 0.8043 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.36.2
77
+ - Pytorch 2.1.0+cu121
78
+ - Datasets 2.16.0
79
+ - Tokenizers 0.15.0
logs/events.out.tfevents.1703685730.dlmachine2.183757.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6a23463dab863db0fe76a66f37b8e5425269e040aaa0f68478429c0cfb486167
3
- size 13005
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cce80a601618b7a204954487d59ff7aa45c54c1b1227a42ac24464961de02683
3
+ size 14681
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:faa9b994152400bcd38ebfbcb4064f81b973b829ecc42f2da237f5b7645d532d
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f6e5237ce11ff1a3c9e4bccd6c3a1d01d81fdb731abb4af2275859d03e22f6d
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "feature_extractor_type": "LayoutLMv2FeatureExtractor",
5
+ "image_processor_type": "LayoutLMv2ImageProcessor",
6
+ "ocr_lang": null,
7
+ "processor_class": "LayoutLMv2Processor",
8
+ "resample": 2,
9
+ "size": {
10
+ "height": 224,
11
+ "width": 224
12
+ },
13
+ "tesseract_config": ""
14
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff