--- license: mit base_model: papluca/xlm-roberta-base-language-detection tags: - Italian - legal ruling - generated_from_trainer metrics: - f1 - accuracy model-index: - name: ribesstefano/RuleBert-v0.4-k1 results: [] --- # ribesstefano/RuleBert-v0.4-k1 This model is a fine-tuned version of [papluca/xlm-roberta-base-language-detection](https://huggingface.co/papluca/xlm-roberta-base-language-detection) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3335 - F1: 0.5287 - Roc Auc: 0.7065 - Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3599 | 0.13 | 250 | 0.3361 | 0.5157 | 0.6901 | 0.0 | | 0.3426 | 0.25 | 500 | 0.3436 | 0.5031 | 0.6842 | 0.0667 | | 0.3621 | 0.38 | 750 | 0.3340 | 0.4861 | 0.6679 | 0.0 | | 0.3692 | 0.5 | 1000 | 0.3397 | 0.5409 | 0.7020 | 0.0 | | 0.3485 | 0.63 | 1250 | 0.3318 | 0.4861 | 0.6679 | 0.0 | | 0.3494 | 0.75 | 1500 | 0.3306 | 0.4861 | 0.6679 | 0.0 | | 0.3464 | 0.88 | 1750 | 0.3353 | 0.4861 | 0.6679 | 0.0 | | 0.3554 | 1.0 | 2000 | 0.3395 | 0.5632 | 0.7243 | 0.0 | | 0.3509 | 1.13 | 2250 | 0.3303 | 0.4861 | 0.6679 | 0.0 | | 0.3331 | 1.26 | 2500 | 0.3359 | 0.5302 | 0.6945 | 0.0 | | 0.3373 | 1.38 | 2750 | 0.3334 | 0.4861 | 0.6679 | 0.0 | | 0.3416 | 1.51 | 3000 | 0.3355 | 0.4861 | 0.6679 | 0.0 | | 0.3492 | 1.63 | 3250 | 0.3335 | 0.5287 | 0.7065 | 0.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0