CIDAUT / README.md
ricardoSLabs's picture
End of training
1bc7055 verified
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: CIDAUT
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9861111111111112

CIDAUT

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0808
  • Accuracy: 0.9861

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 4 0.5989 0.6759
No log 2.0 8 0.3383 0.9444
0.5387 3.0 12 0.1813 0.9769
0.5387 4.0 16 0.1283 0.9676
0.1494 5.0 20 0.0808 0.9861

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0