File size: 38,490 Bytes
52ea8eb b5cf495 52ea8eb b5cf495 52ea8eb b5cf495 52ea8eb b5cf495 52ea8eb b5cf495 52ea8eb b5cf495 52ea8eb b5cf495 52ea8eb b5cf495 52ea8eb b5cf495 52ea8eb b5cf495 52ea8eb b5cf495 52ea8eb b5cf495 52ea8eb b5cf495 52ea8eb b5cf495 52ea8eb b5cf495 52ea8eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 |
from typing import Any, Dict, Optional
import torch
from transformers import AutoModel, PreTrainedModel
from transformers.activations import ClippedGELUActivation, GELUActivation
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_utils import PoolerEndLogits
from .configuration_relik import RelikReaderConfig
class RelikReaderSample:
def __init__(self, **kwargs):
super().__setattr__("_d", {})
self._d = kwargs
def __getattribute__(self, item):
return super(RelikReaderSample, self).__getattribute__(item)
def __getattr__(self, item):
if item.startswith("__") and item.endswith("__"):
# this is likely some python library-specific variable (such as __deepcopy__ for copy)
# better follow standard behavior here
raise AttributeError(item)
elif item in self._d:
return self._d[item]
else:
return None
def __setattr__(self, key, value):
if key in self._d:
self._d[key] = value
else:
super().__setattr__(key, value)
self._d[key] = value
activation2functions = {
"relu": torch.nn.ReLU(),
"gelu": GELUActivation(),
"gelu_10": ClippedGELUActivation(-10, 10),
}
class PoolerEndLogitsBi(PoolerEndLogits):
def __init__(self, config: PretrainedConfig):
super().__init__(config)
self.dense_1 = torch.nn.Linear(config.hidden_size, 2)
def forward(
self,
hidden_states: torch.FloatTensor,
start_states: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
p_mask: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
if p_mask is not None:
p_mask = p_mask.unsqueeze(-1)
logits = super().forward(
hidden_states,
start_states,
start_positions,
p_mask,
)
return logits
class RelikReaderSpanModel(PreTrainedModel):
config_class = RelikReaderConfig
def __init__(self, config: RelikReaderConfig, *args, **kwargs):
super().__init__(config)
# Transformer model declaration
self.config = config
self.transformer_model = (
AutoModel.from_pretrained(self.config.transformer_model)
if self.config.num_layers is None
else AutoModel.from_pretrained(
self.config.transformer_model, num_hidden_layers=self.config.num_layers
)
)
self.transformer_model.resize_token_embeddings(
self.transformer_model.config.vocab_size
+ self.config.additional_special_symbols
)
self.activation = self.config.activation
self.linears_hidden_size = self.config.linears_hidden_size
self.use_last_k_layers = self.config.use_last_k_layers
# named entity detection layers
self.ned_start_classifier = self._get_projection_layer(
self.activation, last_hidden=2, layer_norm=False
)
self.ned_end_classifier = PoolerEndLogits(self.transformer_model.config)
# END entity disambiguation layer
self.ed_start_projector = self._get_projection_layer(self.activation)
self.ed_end_projector = self._get_projection_layer(self.activation)
self.training = self.config.training
# criterion
self.criterion = torch.nn.CrossEntropyLoss()
def _get_projection_layer(
self,
activation: str,
last_hidden: Optional[int] = None,
input_hidden=None,
layer_norm: bool = True,
) -> torch.nn.Sequential:
head_components = [
torch.nn.Dropout(0.1),
torch.nn.Linear(
(
self.transformer_model.config.hidden_size * self.use_last_k_layers
if input_hidden is None
else input_hidden
),
self.linears_hidden_size,
),
activation2functions[activation],
torch.nn.Dropout(0.1),
torch.nn.Linear(
self.linears_hidden_size,
self.linears_hidden_size if last_hidden is None else last_hidden,
),
]
if layer_norm:
head_components.append(
torch.nn.LayerNorm(
self.linears_hidden_size if last_hidden is None else last_hidden,
self.transformer_model.config.layer_norm_eps,
)
)
return torch.nn.Sequential(*head_components)
def _mask_logits(self, logits: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
mask = mask.unsqueeze(-1)
if next(self.parameters()).dtype == torch.float16:
logits = logits * (1 - mask) - 65500 * mask
else:
logits = logits * (1 - mask) - 1e30 * mask
return logits
def _get_model_features(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
token_type_ids: Optional[torch.Tensor],
):
model_input = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"output_hidden_states": self.use_last_k_layers > 1,
}
if token_type_ids is not None:
model_input["token_type_ids"] = token_type_ids
model_output = self.transformer_model(**model_input)
if self.use_last_k_layers > 1:
model_features = torch.cat(
model_output[1][-self.use_last_k_layers :], dim=-1
)
else:
model_features = model_output[0]
return model_features
def compute_ned_end_logits(
self,
start_predictions,
start_labels,
model_features,
prediction_mask,
batch_size,
) -> Optional[torch.Tensor]:
# todo: maybe when constraining on the spans,
# we should not use a prediction_mask for the end tokens.
# at least we should not during training imo
start_positions = start_labels if self.training else start_predictions
start_positions_indices = (
torch.arange(start_positions.size(1), device=start_positions.device)
.unsqueeze(0)
.expand(batch_size, -1)[start_positions > 0]
).to(start_positions.device)
if len(start_positions_indices) > 0:
expanded_features = model_features.repeat_interleave(
torch.sum(start_positions > 0, dim=-1), dim=0
)
expanded_prediction_mask = prediction_mask.repeat_interleave(
torch.sum(start_positions > 0, dim=-1), dim=0
)
end_logits = self.ned_end_classifier(
hidden_states=expanded_features,
start_positions=start_positions_indices,
p_mask=expanded_prediction_mask,
)
return end_logits
return None
def compute_classification_logits(
self,
model_features,
special_symbols_mask,
prediction_mask,
batch_size,
start_positions=None,
end_positions=None,
) -> torch.Tensor:
if start_positions is None or end_positions is None:
start_positions = torch.zeros_like(prediction_mask)
end_positions = torch.zeros_like(prediction_mask)
model_start_features = self.ed_start_projector(model_features)
model_end_features = self.ed_end_projector(model_features)
model_end_features[start_positions > 0] = model_end_features[end_positions > 0]
model_ed_features = torch.cat(
[model_start_features, model_end_features], dim=-1
)
# computing ed features
classes_representations = torch.sum(special_symbols_mask, dim=1)[0].item()
special_symbols_representation = model_ed_features[special_symbols_mask].view(
batch_size, classes_representations, -1
)
logits = torch.bmm(
model_ed_features,
torch.permute(special_symbols_representation, (0, 2, 1)),
)
logits = self._mask_logits(logits, prediction_mask)
return logits
def forward(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
token_type_ids: Optional[torch.Tensor] = None,
prediction_mask: Optional[torch.Tensor] = None,
special_symbols_mask: Optional[torch.Tensor] = None,
start_labels: Optional[torch.Tensor] = None,
end_labels: Optional[torch.Tensor] = None,
use_predefined_spans: bool = False,
*args,
**kwargs,
) -> Dict[str, Any]:
batch_size, seq_len = input_ids.shape
model_features = self._get_model_features(
input_ids, attention_mask, token_type_ids
)
ned_start_labels = None
# named entity detection if required
if use_predefined_spans: # no need to compute spans
ned_start_logits, ned_start_probabilities, ned_start_predictions = (
None,
None,
(
torch.clone(start_labels)
if start_labels is not None
else torch.zeros_like(input_ids)
),
)
ned_end_logits, ned_end_probabilities, ned_end_predictions = (
None,
None,
(
torch.clone(end_labels)
if end_labels is not None
else torch.zeros_like(input_ids)
),
)
ned_start_predictions[ned_start_predictions > 0] = 1
ned_end_predictions[ned_end_predictions > 0] = 1
else: # compute spans
# start boundary prediction
ned_start_logits = self.ned_start_classifier(model_features)
ned_start_logits = self._mask_logits(ned_start_logits, prediction_mask)
ned_start_probabilities = torch.softmax(ned_start_logits, dim=-1)
ned_start_predictions = ned_start_probabilities.argmax(dim=-1)
# end boundary prediction
ned_start_labels = (
torch.zeros_like(start_labels) if start_labels is not None else None
)
if ned_start_labels is not None:
ned_start_labels[start_labels == -100] = -100
ned_start_labels[start_labels > 0] = 1
ned_end_logits = self.compute_ned_end_logits(
ned_start_predictions,
ned_start_labels,
model_features,
prediction_mask,
batch_size,
)
if ned_end_logits is not None:
ned_end_probabilities = torch.softmax(ned_end_logits, dim=-1)
ned_end_predictions = torch.argmax(ned_end_probabilities, dim=-1)
else:
ned_end_logits, ned_end_probabilities = None, None
ned_end_predictions = ned_start_predictions.new_zeros(batch_size)
# flattening end predictions
# (flattening can happen only if the
# end boundaries were not predicted using the gold labels)
if not self.training and ned_end_logits is not None:
flattened_end_predictions = torch.zeros_like(ned_start_predictions)
row_indices, start_positions = torch.where(ned_start_predictions > 0)
ned_end_predictions[
ned_end_predictions < start_positions
] = start_positions[ned_end_predictions < start_positions]
end_spans_repeated = (row_indices + 1) * seq_len + ned_end_predictions
cummax_values, _ = end_spans_repeated.cummax(dim=0)
end_spans_repeated = end_spans_repeated > torch.cat(
(end_spans_repeated[:1], cummax_values[:-1])
)
end_spans_repeated[0] = True
ned_start_predictions[
row_indices[~end_spans_repeated],
start_positions[~end_spans_repeated],
] = 0
row_indices, start_positions, ned_end_predictions = (
row_indices[end_spans_repeated],
start_positions[end_spans_repeated],
ned_end_predictions[end_spans_repeated],
)
flattened_end_predictions[row_indices, ned_end_predictions] = 1
total_start_predictions, total_end_predictions = (
ned_start_predictions.sum(),
flattened_end_predictions.sum(),
)
assert (
total_start_predictions == 0
or total_start_predictions == total_end_predictions
), (
f"Total number of start predictions = {total_start_predictions}. "
f"Total number of end predictions = {total_end_predictions}"
)
ned_end_predictions = flattened_end_predictions
else:
ned_end_predictions = torch.zeros_like(ned_start_predictions)
start_position, end_position = (
(start_labels, end_labels)
if self.training
else (ned_start_predictions, ned_end_predictions)
)
# Entity disambiguation
ed_logits = self.compute_classification_logits(
model_features,
special_symbols_mask,
prediction_mask,
batch_size,
start_position,
end_position,
)
ed_probabilities = torch.softmax(ed_logits, dim=-1)
ed_predictions = torch.argmax(ed_probabilities, dim=-1)
# output build
output_dict = dict(
batch_size=batch_size,
ned_start_logits=ned_start_logits,
ned_start_probabilities=ned_start_probabilities,
ned_start_predictions=ned_start_predictions,
ned_end_logits=ned_end_logits,
ned_end_probabilities=ned_end_probabilities,
ned_end_predictions=ned_end_predictions,
ed_logits=ed_logits,
ed_probabilities=ed_probabilities,
ed_predictions=ed_predictions,
)
# compute loss if labels
if start_labels is not None and end_labels is not None and self.training:
# named entity detection loss
# start
if ned_start_logits is not None:
ned_start_loss = self.criterion(
ned_start_logits.view(-1, ned_start_logits.shape[-1]),
ned_start_labels.view(-1),
)
else:
ned_start_loss = 0
# end
if ned_end_logits is not None:
ned_end_labels = torch.zeros_like(end_labels)
ned_end_labels[end_labels == -100] = -100
ned_end_labels[end_labels > 0] = 1
ned_end_loss = self.criterion(
ned_end_logits,
(
torch.arange(
ned_end_labels.size(1), device=ned_end_labels.device
)
.unsqueeze(0)
.expand(batch_size, -1)[ned_end_labels > 0]
).to(ned_end_labels.device),
)
else:
ned_end_loss = 0
# entity disambiguation loss
start_labels[ned_start_labels != 1] = -100
ed_labels = torch.clone(start_labels)
ed_labels[end_labels > 0] = end_labels[end_labels > 0]
ed_loss = self.criterion(
ed_logits.view(-1, ed_logits.shape[-1]),
ed_labels.view(-1),
)
output_dict["ned_start_loss"] = ned_start_loss
output_dict["ned_end_loss"] = ned_end_loss
output_dict["ed_loss"] = ed_loss
output_dict["loss"] = ned_start_loss + ned_end_loss + ed_loss
return output_dict
class RelikReaderREModel(PreTrainedModel):
config_class = RelikReaderConfig
def __init__(self, config, *args, **kwargs):
super().__init__(config)
# Transformer model declaration
# self.transformer_model_name = transformer_model
self.config = config
self.transformer_model = (
AutoModel.from_pretrained(config.transformer_model)
if config.num_layers is None
else AutoModel.from_pretrained(
config.transformer_model, num_hidden_layers=config.num_layers
)
)
self.transformer_model.resize_token_embeddings(
self.transformer_model.config.vocab_size
+ config.additional_special_symbols
+ config.additional_special_symbols_types,
)
# named entity detection layers
self.ned_start_classifier = self._get_projection_layer(
config.activation, last_hidden=2, layer_norm=False
)
self.ned_end_classifier = PoolerEndLogitsBi(self.transformer_model.config)
self.relation_disambiguation_loss = (
config.relation_disambiguation_loss
if hasattr(config, "relation_disambiguation_loss")
else False
)
if self.config.entity_type_loss and self.config.add_entity_embedding:
input_hidden_ents = 3 * self.config.linears_hidden_size
else:
input_hidden_ents = 2 * self.config.linears_hidden_size
self.re_projector = self._get_projection_layer(
config.activation,
input_hidden=2 * self.transformer_model.config.hidden_size,
hidden=input_hidden_ents,
last_hidden=2 * self.config.linears_hidden_size,
)
self.re_relation_projector = self._get_projection_layer(
config.activation,
input_hidden=self.transformer_model.config.hidden_size,
)
if self.config.entity_type_loss or self.relation_disambiguation_loss:
self.re_entities_projector = self._get_projection_layer(
config.activation,
input_hidden=2 * self.transformer_model.config.hidden_size,
)
self.re_definition_projector = self._get_projection_layer(
config.activation,
)
self.re_classifier = self._get_projection_layer(
config.activation,
input_hidden=config.linears_hidden_size,
last_hidden=2,
layer_norm=False,
)
self.training = config.training
# criterion
self.criterion = torch.nn.CrossEntropyLoss()
self.criterion_type = torch.nn.BCEWithLogitsLoss()
def _get_projection_layer(
self,
activation: str,
last_hidden: Optional[int] = None,
hidden: Optional[int] = None,
input_hidden=None,
layer_norm: bool = True,
) -> torch.nn.Sequential:
head_components = [
torch.nn.Dropout(0.1),
torch.nn.Linear(
(
self.transformer_model.config.hidden_size
* self.config.use_last_k_layers
if input_hidden is None
else input_hidden
),
self.config.linears_hidden_size if hidden is None else hidden,
),
activation2functions[activation],
torch.nn.Dropout(0.1),
torch.nn.Linear(
self.config.linears_hidden_size if hidden is None else hidden,
self.config.linears_hidden_size if last_hidden is None else last_hidden,
),
]
if layer_norm:
head_components.append(
torch.nn.LayerNorm(
(
self.config.linears_hidden_size
if last_hidden is None
else last_hidden
),
self.transformer_model.config.layer_norm_eps,
)
)
return torch.nn.Sequential(*head_components)
def _mask_logits(self, logits: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
mask = mask.unsqueeze(-1)
if next(self.parameters()).dtype == torch.float16:
logits = logits * (1 - mask) - 65500 * mask
else:
logits = logits * (1 - mask) - 1e30 * mask
return logits
def _get_model_features(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
token_type_ids: Optional[torch.Tensor],
):
model_input = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"output_hidden_states": self.config.use_last_k_layers > 1,
}
if token_type_ids is not None:
model_input["token_type_ids"] = token_type_ids
model_output = self.transformer_model(**model_input)
if self.config.use_last_k_layers > 1:
model_features = torch.cat(
model_output[1][-self.config.use_last_k_layers :], dim=-1
)
else:
model_features = model_output[0]
return model_features
def compute_ned_end_logits(
self,
start_predictions,
start_labels,
model_features,
prediction_mask,
batch_size,
mask_preceding: bool = False,
) -> Optional[torch.Tensor]:
# todo: maybe when constraining on the spans,
# we should not use a prediction_mask for the end tokens.
# at least we should not during training imo
start_positions = start_labels if self.training else start_predictions
start_positions_indices = (
torch.arange(start_positions.size(1), device=start_positions.device)
.unsqueeze(0)
.expand(batch_size, -1)[start_positions > 0]
).to(start_positions.device)
if len(start_positions_indices) > 0:
expanded_features = model_features.repeat_interleave(
torch.sum(start_positions > 0, dim=-1), dim=0
)
expanded_prediction_mask = prediction_mask.repeat_interleave(
torch.sum(start_positions > 0, dim=-1), dim=0
)
if mask_preceding:
expanded_prediction_mask[
torch.arange(
expanded_prediction_mask.shape[1],
device=expanded_prediction_mask.device,
)
< start_positions_indices.unsqueeze(1)
] = 1
end_logits = self.ned_end_classifier(
hidden_states=expanded_features,
start_positions=start_positions_indices,
p_mask=expanded_prediction_mask,
)
return end_logits
return None
def compute_relation_logits(
self,
model_entity_features,
special_symbols_features,
) -> torch.Tensor:
model_subject_object_features = self.re_projector(model_entity_features)
model_subject_features = model_subject_object_features[
:, :, : model_subject_object_features.shape[-1] // 2
]
model_object_features = model_subject_object_features[
:, :, model_subject_object_features.shape[-1] // 2 :
]
special_symbols_start_representation = self.re_relation_projector(
special_symbols_features
)
re_logits = torch.einsum(
"bse,bde,bfe->bsdfe",
model_subject_features,
model_object_features,
special_symbols_start_representation,
)
re_logits = self.re_classifier(re_logits)
return re_logits
def compute_entity_logits(
self,
model_entity_features,
special_symbols_features,
) -> torch.Tensor:
model_ed_features = self.re_entities_projector(model_entity_features)
special_symbols_ed_representation = self.re_definition_projector(
special_symbols_features
)
logits = torch.bmm(
model_ed_features,
torch.permute(special_symbols_ed_representation, (0, 2, 1)),
)
logits = self._mask_logits(
logits, (model_entity_features == -100).all(2).long()
)
return logits
def compute_loss(self, logits, labels, mask=None):
logits = logits.reshape(-1, logits.shape[-1])
labels = labels.reshape(-1).long()
if mask is not None:
return self.criterion(logits[mask], labels[mask])
return self.criterion(logits, labels)
def compute_ned_type_loss(
self,
disambiguation_labels,
re_ned_entities_logits,
ned_type_logits,
re_entities_logits,
entity_types,
mask,
):
if self.config.entity_type_loss and self.relation_disambiguation_loss:
return self.criterion_type(
re_ned_entities_logits[disambiguation_labels != -100],
disambiguation_labels[disambiguation_labels != -100],
)
if self.config.entity_type_loss:
return self.criterion_type(
ned_type_logits[mask],
disambiguation_labels[:, :, :entity_types][mask],
)
if self.relation_disambiguation_loss:
return self.criterion_type(
re_entities_logits[disambiguation_labels != -100],
disambiguation_labels[disambiguation_labels != -100],
)
return 0
def compute_relation_loss(self, relation_labels, re_logits):
return self.compute_loss(
re_logits, relation_labels, relation_labels.view(-1) != -100
)
def forward(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
token_type_ids: torch.Tensor,
prediction_mask: Optional[torch.Tensor] = None,
special_symbols_mask: Optional[torch.Tensor] = None,
special_symbols_mask_entities: Optional[torch.Tensor] = None,
start_labels: Optional[torch.Tensor] = None,
end_labels: Optional[torch.Tensor] = None,
disambiguation_labels: Optional[torch.Tensor] = None,
relation_labels: Optional[torch.Tensor] = None,
relation_threshold: float = None,
is_validation: bool = False,
is_prediction: bool = False,
use_predefined_spans: bool = False,
*args,
**kwargs,
) -> Dict[str, Any]:
relation_threshold = (
self.config.threshold if relation_threshold is None else relation_threshold
)
batch_size = input_ids.shape[0]
model_features = self._get_model_features(
input_ids, attention_mask, token_type_ids
)
# named entity detection
if use_predefined_spans:
ned_start_logits, ned_start_probabilities, ned_start_predictions = (
None,
None,
torch.zeros_like(start_labels),
)
ned_end_logits, ned_end_probabilities, ned_end_predictions = (
None,
None,
torch.zeros_like(end_labels),
)
ned_start_predictions[start_labels > 0] = 1
ned_end_predictions[end_labels > 0] = 1
ned_end_predictions = ned_end_predictions[~(end_labels == -100).all(2)]
ned_start_labels = start_labels
ned_start_labels[start_labels > 0] = 1
else:
# start boundary prediction
ned_start_logits = self.ned_start_classifier(model_features)
if is_validation or is_prediction:
ned_start_logits = self._mask_logits(
ned_start_logits, prediction_mask
) # why?
ned_start_probabilities = torch.softmax(ned_start_logits, dim=-1)
ned_start_predictions = ned_start_probabilities.argmax(dim=-1)
# end boundary prediction
ned_start_labels = (
torch.zeros_like(start_labels) if start_labels is not None else None
)
# start_labels contain entity id at their position, we just need 1 for start of entity
if ned_start_labels is not None:
ned_start_labels[start_labels == -100] = -100
ned_start_labels[start_labels > 0] = 1
# compute end logits only if there are any start predictions.
# For each start prediction, n end predictions are made
ned_end_logits = self.compute_ned_end_logits(
ned_start_predictions,
ned_start_labels,
model_features,
prediction_mask,
batch_size,
True,
)
if ned_end_logits is not None:
# For each start prediction, n end predictions are made based on
# binary classification ie. argmax at each position.
ned_end_probabilities = torch.softmax(ned_end_logits, dim=-1)
ned_end_predictions = ned_end_probabilities.argmax(dim=-1)
else:
ned_end_logits, ned_end_probabilities = None, None
ned_end_predictions = torch.zeros_like(ned_start_predictions)
if is_prediction or is_validation:
end_preds_count = ned_end_predictions.sum(1)
# If there are no end predictions for a start prediction, remove the start prediction
if (end_preds_count == 0).any() and (ned_start_predictions > 0).any():
ned_start_predictions[ned_start_predictions == 1] = (
end_preds_count != 0
).long()
ned_end_predictions = ned_end_predictions[end_preds_count != 0]
if end_labels is not None:
end_labels = end_labels[~(end_labels == -100).all(2)]
start_position, end_position = (
(start_labels, end_labels)
if (not is_prediction and not is_validation)
else (ned_start_predictions, ned_end_predictions)
)
start_counts = (start_position > 0).sum(1)
if (start_counts > 0).any():
ned_end_predictions = ned_end_predictions.split(start_counts.tolist())
# limit to 30 predictions per document using start_counts, by setting all po after sum is 30 to 0
# if is_validation or is_prediction:
# ned_start_predictions[ned_start_predictions == 1] = start_counts
# We can only predict relations if we have start and end predictions
if (end_position > 0).sum() > 0:
ends_count = (end_position > 0).sum(1)
model_subject_features = torch.cat(
[
torch.repeat_interleave(
model_features[start_position > 0], ends_count, dim=0
), # start position features
torch.repeat_interleave(model_features, start_counts, dim=0)[
end_position > 0
], # end position features
],
dim=-1,
)
ents_count = torch.nn.utils.rnn.pad_sequence(
torch.split(ends_count, start_counts.tolist()),
batch_first=True,
padding_value=0,
).sum(1)
model_subject_features = torch.nn.utils.rnn.pad_sequence(
torch.split(model_subject_features, ents_count.tolist()),
batch_first=True,
padding_value=-100,
)
# if is_validation or is_prediction:
# model_subject_features = model_subject_features[:, :30, :]
# entity disambiguation. Here relation_disambiguation_loss would only be useful to
# reduce the number of candidate relations for the next step, but currently unused.
if self.config.entity_type_loss or self.relation_disambiguation_loss:
(re_ned_entities_logits) = self.compute_entity_logits(
model_subject_features,
model_features[
special_symbols_mask | special_symbols_mask_entities
].view(batch_size, -1, model_features.shape[-1]),
)
entity_types = torch.sum(special_symbols_mask_entities, dim=1)[0].item()
ned_type_logits = re_ned_entities_logits[:, :, :entity_types]
re_entities_logits = re_ned_entities_logits[:, :, entity_types:]
if self.config.entity_type_loss:
ned_type_probabilities = torch.sigmoid(ned_type_logits)
ned_type_predictions = ned_type_probabilities.argmax(dim=-1)
if self.config.add_entity_embedding:
special_symbols_representation = model_features[
special_symbols_mask_entities
].view(batch_size, entity_types, -1)
entities_representation = torch.einsum(
"bsp,bpe->bse",
ned_type_probabilities,
special_symbols_representation,
)
model_subject_features = torch.cat(
[model_subject_features, entities_representation], dim=-1
)
re_entities_probabilities = torch.sigmoid(re_entities_logits)
re_entities_predictions = re_entities_probabilities.round()
else:
(
ned_type_logits,
ned_type_probabilities,
re_entities_logits,
re_entities_probabilities,
) = (None, None, None, None)
ned_type_predictions, re_entities_predictions = (
torch.zeros([batch_size, 1], dtype=torch.long).to(input_ids.device),
torch.zeros([batch_size, 1], dtype=torch.long).to(input_ids.device),
)
# Compute relation logits
re_logits = self.compute_relation_logits(
model_subject_features,
model_features[special_symbols_mask].view(
batch_size, -1, model_features.shape[-1]
),
)
re_probabilities = torch.softmax(re_logits, dim=-1)
# we set a thresshold instead of argmax in cause it needs to be tweaked
re_predictions = re_probabilities[:, :, :, :, 1] > relation_threshold
re_probabilities = re_probabilities[:, :, :, :, 1]
else:
(
ned_type_logits,
ned_type_probabilities,
re_entities_logits,
re_entities_probabilities,
) = (None, None, None, None)
ned_type_predictions, re_entities_predictions = (
torch.zeros([batch_size, 1], dtype=torch.long).to(input_ids.device),
torch.zeros([batch_size, 1], dtype=torch.long).to(input_ids.device),
)
re_logits, re_probabilities, re_predictions = (
torch.zeros(
[batch_size, 1, 1, special_symbols_mask.sum(1)[0]], dtype=torch.long
).to(input_ids.device),
torch.zeros(
[batch_size, 1, 1, special_symbols_mask.sum(1)[0]], dtype=torch.long
).to(input_ids.device),
torch.zeros(
[batch_size, 1, 1, special_symbols_mask.sum(1)[0]], dtype=torch.long
).to(input_ids.device),
)
# output build
output_dict = dict(
batch_size=batch_size,
ned_start_logits=ned_start_logits,
ned_start_probabilities=ned_start_probabilities,
ned_start_predictions=ned_start_predictions,
ned_end_logits=ned_end_logits,
ned_end_probabilities=ned_end_probabilities,
ned_end_predictions=ned_end_predictions,
ned_type_logits=ned_type_logits,
ned_type_probabilities=ned_type_probabilities,
ned_type_predictions=ned_type_predictions,
re_entities_logits=re_entities_logits,
re_entities_probabilities=re_entities_probabilities,
re_entities_predictions=re_entities_predictions,
re_logits=re_logits,
re_probabilities=re_probabilities,
re_predictions=re_predictions,
)
if (
start_labels is not None
and end_labels is not None
and relation_labels is not None
and is_prediction is False
):
ned_start_loss = self.compute_loss(ned_start_logits, ned_start_labels)
end_labels[end_labels > 0] = 1
ned_end_loss = self.compute_loss(ned_end_logits, end_labels)
if self.config.entity_type_loss or self.relation_disambiguation_loss:
ned_type_loss = self.compute_ned_type_loss(
disambiguation_labels,
re_ned_entities_logits,
ned_type_logits,
re_entities_logits,
entity_types,
(model_subject_features != -100).all(2),
)
relation_loss = self.compute_relation_loss(relation_labels, re_logits)
# compute loss. We can skip the relation loss if we are in the first epochs (optional)
if self.config.entity_type_loss or self.relation_disambiguation_loss:
output_dict["loss"] = (
ned_start_loss + ned_end_loss + relation_loss + ned_type_loss
) / 4
output_dict["ned_type_loss"] = ned_type_loss
else:
output_dict["loss"] = ((1 / 20) * (ned_start_loss + ned_end_loss)) + (
(9 / 10) * relation_loss
)
output_dict["ned_start_loss"] = ned_start_loss
output_dict["ned_end_loss"] = ned_end_loss
output_dict["re_loss"] = relation_loss
return output_dict
|