File size: 1,742 Bytes
2296eb5
 
7ac1315
 
 
f1b4974
 
7ac1315
 
 
2296eb5
7ac1315
 
 
 
 
 
 
 
f1b4974
 
7ac1315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1b4974
 
 
 
 
 
 
 
 
 
 
7ac1315
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- matthews_correlation
model-index:
- name: work1_AIA_LLM_B_132001
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# work1_AIA_LLM_B_132001

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2488
- Matthews Correlation: 0.5406

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.1282        | 1.0   | 535  | 0.7020          | 0.5086               |
| 0.0923        | 2.0   | 1070 | 1.0002          | 0.5173               |
| 0.0693        | 3.0   | 1605 | 1.0410          | 0.5195               |
| 0.0524        | 4.0   | 2140 | 1.2027          | 0.5309               |
| 0.042         | 5.0   | 2675 | 1.2488          | 0.5406               |


### Framework versions

- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2