File size: 13,789 Bytes
4243ad2
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a581f15ed40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a581f15edd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a581f15ee60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a581f15eef0>", "_build": "<function ActorCriticPolicy._build at 0x7a581f15ef80>", "forward": "<function ActorCriticPolicy.forward at 0x7a581f15f010>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a581f15f0a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a581f15f130>", "_predict": "<function ActorCriticPolicy._predict at 0x7a581f15f1c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a581f15f250>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a581f15f2e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a581f15f370>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a58202940c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1721878772342004858, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA11Uz7qZRg/G+ZvPNR0nb5h+zc9dPcfvQAAAAAAAAAAE/IJPgDCqD5J3iI95M5tvhRBJz3prw69AAAAAAAAAAAt4pk+ue8RP424272E0oK+6uk0PemSBL0AAAAAAAAAAADmyz32ZG66WvoBuAA8UrAj/bs5fsgVNwAAgD8AAIA/ZvUpvcNZDLqSWRU4EScjMcU+EDfN6iy3AACAPwAAgD8AAc89wxE/ukDMQzlLQTg0ynbON529Z7gAAIA/AACAPy0lQD6cbnK82q4RO6M3J7mzhN69FnI4ugAAgD8AAIA/MztePI9+bbomticz1ex8rmnYbTrP3smzAACAPwAAgD/qc2m+v6dAP1iNaz42n6i+OrV6PDJajz0AAAAAAAAAAPMvFj4SEaI/0nTlPsxQsL4Cqo8+OLFDPgAAAAAAAAAApVSSvhZ9Aj/nzgM+TfqdvpqCBTwtYuk8AAAAAAAAAADast293Si5P9QVEr/fuA6+2V+zvTPcTL4AAAAAAAAAAKaHOj4fP7w623noN02TcjT4PQc8MT8LtwAAgD8AAIA/bVI0PsEXrT+zJg0/fl+uvu80iT7r/nU+AAAAAAAAAAAzG8c77FY5P1fAEj0B5Yy+/aGmuuftkjwAAAAAAAAAAOacq72uXYC6gEeAtpXrgbGcmRk6wYWUNQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGLSVwPy08iMAWyUTegDjAF0lEdAlUzbJ8v25HV9lChoBkdAZpJ38GcFyWgHTegDaAhHQJVOV2wFC9h1fZQoaAZHQDgdG6PKdQRoB00GAWgIR0CVUArhisnzdX2UKGgGR0BwX1BVuJk5aAdN3AFoCEdAlVISWNWEK3V9lChoBkdAacguK4x1xWgHTXYDaAhHQJVVQna37UJ1fZQoaAZHQGCvCBwuM/BoB03oA2gIR0CVblvuw5eadX2UKGgGR0BG9kMLF4s3aAdNCAFoCEdAlW7kBnzxw3V9lChoBkdAcdhgsbvPT2gHTZgCaAhHQJVwjYjB2wF1fZQoaAZHQHEovr0J4SpoB01JAmgIR0CVde5NXYDldX2UKGgGR0Bkd2yTpxFRaAdN6ANoCEdAlXcdjPOY6XV9lChoBkdAYyvZX+2mYWgHTegDaAhHQJV4sHPeHi51fZQoaAZHQEG8pBHCoCNoB0vqaAhHQJV88woLG711fZQoaAZHQGdGtGEwnIBoB03oA2gIR0CVggG+9Jz1dX2UKGgGR0BviBEKE385aAdNbwNoCEdAlYIC9EkSmXV9lChoBkdAY3RR51Ng0GgHTegDaAhHQJWGtU1hsqJ1fZQoaAZHQG2ASckMTexoB02nAmgIR0CViAx0uDjBdX2UKGgGR0BxBBBTn7pFaAdNZwNoCEdAlYiRBE8aGnV9lChoBkdAb7uIO6NEPWgHTeECaAhHQJWJXAFgUlB1fZQoaAZHQEPjnX/YJ3RoB0vtaAhHQJWJcwztTk11fZQoaAZHQGOQ/6fra/RoB03oA2gIR0CVjAeSB9ThdX2UKGgGR0Bu6ZrgwXZXaAdNwQFoCEdAlZGqp5u63HV9lChoBkdAYs9jVhCtzWgHTegDaAhHQJWWQbHZK4B1fZQoaAZHQHHpQu7HyVhoB02zAWgIR0CVmuy2QXANdX2UKGgGR0BwaS8ujASGaAdNZAFoCEdAlZt4zWPLgXV9lChoBkdAYCPM+NcW02gHTegDaAhHQJWc1VOsT391fZQoaAZHQGCeCYb83uNoB03oA2gIR0CVoBKW9lErdX2UKGgGR0BrfUG1QZXNaAdNxQNoCEdAlaMoI8hcJXV9lChoBkdAb+uzFdcB2mgHTVUBaAhHQJW1zO0LMLZ1fZQoaAZHQGRiLB9Cu2ZoB03oA2gIR0CVtwJ66asqdX2UKGgGR0BtfNYfW+XaaAdN/wFoCEdAlbfHbypaR3V9lChoBkdAcYn6cRUWEmgHTZsCaAhHQJW4Yu8K5TZ1fZQoaAZHQGuqgN5MURFoB01wAmgIR0CVu8OSGJvYdX2UKGgGR0BnYauKXOW0aAdN6ANoCEdAlb1ak/KQrHV9lChoBkdAZIPnJ1aGH2gHTegDaAhHQJW+ae5Fw1l1fZQoaAZHQHBlPh2nsLRoB02PAWgIR0CVwLX1anrIdX2UKGgGR0Bw5XsD4gzQaAdN8wJoCEdAlcNw7o0Q9XV9lChoBkdAchiEiMYMv2gHTcwBaAhHQJXFIcuJ1q51fZQoaAZHQG+nEWRA8jloB03zAmgIR0CVx8RDCxeLdX2UKGgGR0BwEzR9gF5faAdNRwFoCEdAlcj5Yoy9EnV9lChoBkdAcMS0jkdWAGgHTcMBaAhHQJXKUX9BKL91fZQoaAZHQHDeNyPuG9JoB02LAmgIR0CVyrxM36yjdX2UKGgGR0ByvhuKoAGTaAdNfwFoCEdAlcrzzd1uBXV9lChoBkdAbKCM3qAz6GgHTWkBaAhHQJXLpTXJ5mh1fZQoaAZHQG2SAow22ohoB01MAWgIR0CVz0SlWOp9dX2UKGgGR0BxLW1Vo6CEaAdNeAFoCEdAlc+ekk8ifXV9lChoBkdAcWcTHbRF7WgHTZQCaAhHQJXQaBoVVPx1fZQoaAZHQGNjFQEZBLRoB03oA2gIR0CV0KNQj2SMdX2UKGgGR0Bx7k1O0svqaAdNUAFoCEdAldGujmCAc3V9lChoBkdAccGo1DSgG2gHTQACaAhHQJXSAdQwbl11fZQoaAZHQG82ezUqhDhoB02PAWgIR0CV0oqEeyRkdX2UKGgGR0BRMajnFHawaAdNGQFoCEdAldWlrZamoHV9lChoBkdAcOKCTEBKc2gHTdoCaAhHQJXXp3ljmS11fZQoaAZHQHGiKmTC+DhoB018AWgIR0CV2nidrftQdX2UKGgGR0ByUiTaCcwyaAdNbAFoCEdAld92/JvHcXV9lChoBkdAcFjGMn7YTWgHTVsBaAhHQJXgiOhkAgh1fZQoaAZHQHE2Pr0J4SpoB01eAmgIR0CV4e5qubI+dX2UKGgGR0Bxwh8zAN5MaAdNOwJoCEdAleIzmnwXqXV9lChoBkdAcdbs6JZW72gHTX0BaAhHQJXkEEZBLPF1fZQoaAZHQHBROryUcGVoB01+AWgIR0CV5Jg2qDK6dX2UKGgGR0BxLTtTkyULaAdNTgJoCEdAleV+Lehwl3V9lChoBkdAcQUBxgiNbWgHTaUBaAhHQJXnVuejEeh1fZQoaAZHQHGvy4nWrfdoB024AmgIR0CV/U6nzg/DdX2UKGgGR0Btbs+/xlQNaAdNOAJoCEdAlf6vzasZHnV9lChoBkdAbwYtknTiKmgHTaABaAhHQJX/R+WnjyZ1fZQoaAZHQG8Ph6rvLHNoB008AmgIR0CV/9ZXMhX9dX2UKGgGR0Bxu1hoduHfaAdNQwNoCEdAlgAjND+irXV9lChoBkdAchcuCwr1/WgHTfICaAhHQJYCLirDIil1fZQoaAZHQHAs2CZnctZoB01BAWgIR0CWBVCpm29ddX2UKGgGR0BuiGl2vB8AaAdNTAFoCEdAlgWZFocrAnV9lChoBkdAcDumbsniN2gHTTABaAhHQJYGGkxh2GJ1fZQoaAZHQGzIBwl0HQhoB00vAWgIR0CWBnlHBk7PdX2UKGgGR0Bvgw0VJtiyaAdNOgJoCEdAlge9NBWxQnV9lChoBkdAarE6asp5NWgHTZYBaAhHQJYHvdFfAsV1fZQoaAZHQGupa/h2nsNoB01HAWgIR0CWCcLWZqmCdX2UKGgGR0BxIQoDxLCfaAdNTQJoCEdAlgrG7e2uxXV9lChoBkdAcJ/hHLA572gHTRUBaAhHQJYK2nKnvUl1fZQoaAZHQHDb+v+wTuhoB02bAWgIR0CWC56Q/5ckdX2UKGgGR0Bv430EovzwaAdNQgFoCEdAlg0bVSXMQnV9lChoBkdAcIer3j+72GgHTXwBaAhHQJYNlbu+h5B1fZQoaAZHQG6ArBTGYKJoB00vAWgIR0CWFD3L3bmEdX2UKGgGR0Bs3ENDtw71aAdNAgJoCEdAlhQ/TkQwsXV9lChoBkdAbnVsi0OVgWgHTVkBaAhHQJYUZiH6/It1fZQoaAZHQHFPHH3lCC1oB03KAWgIR0CWFaAGB4D+dX2UKGgGR0BsF7VJ+UhWaAdNhAFoCEdAlhXbOZ9d/3V9lChoBkdAcBVjJ+2E02gHTWYBaAhHQJYY7UMG5c11fZQoaAZHQG1s7z9S/CZoB01MAWgIR0CWGP7FKkEcdX2UKGgGR0Bt2W7UXpGGaAdNmQFoCEdAlhkO+7Dl5nV9lChoBkdAcaZ/YJ3PiWgHTdoBaAhHQJYZZc2R7qp1fZQoaAZHQHKKcLfDUExoB03MAWgIR0CWGdIV/MGHdX2UKGgGR0BwQJSeiBXkaAdNcwFoCEdAlhpbxEv0y3V9lChoBkdAcMSGqxTsIGgHTVsBaAhHQJYcFoQFs551fZQoaAZHQFlHwS8J2MdoB03oA2gIR0CWH2cRlHz6dX2UKGgGR0BxDZbQkX1raAdN5gFoCEdAliFuo1k1/HV9lChoBkdASvQW+GoJiWgHS9ZoCEdAliH2eg+Ql3V9lChoBkdAbn0Cz1K5CmgHTVABaAhHQJYiRNlAeJZ1fZQoaAZHQG+sv69CeEtoB00jAmgIR0CWInBomG/OdX2UKGgGR0BwqNz90ihWaAdNVwFoCEdAliKoF7laKXV9lChoBkdAcOYqTr3TNWgHTYQBaAhHQJYllGAkLQZ1fZQoaAZHQHB3Atrbg0loB01/AWgIR0CWJZWBSUC8dX2UKGgGR0Bvqr7Gecx1aAdNRAFoCEdAliXzVpblinVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}