richie-ghost commited on
Commit
c59b096
1 Parent(s): 4da7e4c

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,551 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: cross-encoder/nli-deberta-v3-large
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:40338
42
+ - loss:MultipleNegativesRankingLoss
43
+ widget:
44
+ - source_sentence: '"Rumpelstilsken, I command the sun to set!" He seemed to sense
45
+ a hesitation in his mind, and then the impression of jeweled gears turning.'
46
+ sentences:
47
+ - A football game is playing.
48
+ - He sensed hesitation when commanding Rumpelstiltskin.
49
+ - I ran and he saw me immediately.
50
+ - source_sentence: A woman wears sunglasses and a black coat as she walks.
51
+ sentences:
52
+ - The lady in black walks while wearing her shades.
53
+ - Two women were walking
54
+ - The people are running towards the mountains.
55
+ - source_sentence: The Congress relies on GAO to examine virtually every federal program,
56
+ activity, and policy, as well as institutions that rely on federal funds.
57
+ sentences:
58
+ - The men are standing in line at the restaurant.
59
+ - GAO helps Congress.
60
+ - Tide permitting, view the shrine from its base to appreciate its full size.
61
+ - source_sentence: The resort was named after Louis James Fraser, an English adventurer
62
+ and scoundrel, who dealt in mule hides, tin, opium, and gambling.
63
+ sentences:
64
+ - A man in front of people.
65
+ - The resort was named after an English adventurer and scoundrel.
66
+ - A woman is holding flowers by two men on a bench.
67
+ - source_sentence: Three men riding a bicycle, tow of them are wearing a helmet.
68
+ sentences:
69
+ - Accountability measures help establish the financial condition of the government.
70
+ - A man is pushing a truck.
71
+ - There are at least two helmets.
72
+ model-index:
73
+ - name: SentenceTransformer based on cross-encoder/nli-deberta-v3-large
74
+ results:
75
+ - task:
76
+ type: information-retrieval
77
+ name: Information Retrieval
78
+ dataset:
79
+ name: eval
80
+ type: eval
81
+ metrics:
82
+ - type: cosine_accuracy@1
83
+ value: 0.0003470672814715653
84
+ name: Cosine Accuracy@1
85
+ - type: cosine_accuracy@3
86
+ value: 0.2842728940453171
87
+ name: Cosine Accuracy@3
88
+ - type: cosine_accuracy@5
89
+ value: 0.42875204521790866
90
+ name: Cosine Accuracy@5
91
+ - type: cosine_accuracy@10
92
+ value: 0.5317318657345431
93
+ name: Cosine Accuracy@10
94
+ - type: cosine_precision@1
95
+ value: 0.0003470672814715653
96
+ name: Cosine Precision@1
97
+ - type: cosine_precision@3
98
+ value: 0.09475763134843902
99
+ name: Cosine Precision@3
100
+ - type: cosine_precision@5
101
+ value: 0.08575040904358174
102
+ name: Cosine Precision@5
103
+ - type: cosine_precision@10
104
+ value: 0.053173186573454316
105
+ name: Cosine Precision@10
106
+ - type: cosine_recall@1
107
+ value: 0.0003470672814715653
108
+ name: Cosine Recall@1
109
+ - type: cosine_recall@3
110
+ value: 0.2842728940453171
111
+ name: Cosine Recall@3
112
+ - type: cosine_recall@5
113
+ value: 0.42875204521790866
114
+ name: Cosine Recall@5
115
+ - type: cosine_recall@10
116
+ value: 0.5317318657345431
117
+ name: Cosine Recall@10
118
+ - type: cosine_ndcg@10
119
+ value: 0.2599623819220365
120
+ name: Cosine Ndcg@10
121
+ - type: cosine_mrr@10
122
+ value: 0.17320152646642903
123
+ name: Cosine Mrr@10
124
+ - type: cosine_map@100
125
+ value: 0.1849889511878054
126
+ name: Cosine Map@100
127
+ - type: dot_accuracy@1
128
+ value: 0.003718578015766771
129
+ name: Dot Accuracy@1
130
+ - type: dot_accuracy@3
131
+ value: 0.262531607913134
132
+ name: Dot Accuracy@3
133
+ - type: dot_accuracy@5
134
+ value: 0.40182954038375723
135
+ name: Dot Accuracy@5
136
+ - type: dot_accuracy@10
137
+ value: 0.5089741682780504
138
+ name: Dot Accuracy@10
139
+ - type: dot_precision@1
140
+ value: 0.003718578015766771
141
+ name: Dot Precision@1
142
+ - type: dot_precision@3
143
+ value: 0.08751053597104465
144
+ name: Dot Precision@3
145
+ - type: dot_precision@5
146
+ value: 0.08036590807675144
147
+ name: Dot Precision@5
148
+ - type: dot_precision@10
149
+ value: 0.050897416827805034
150
+ name: Dot Precision@10
151
+ - type: dot_recall@1
152
+ value: 0.003718578015766771
153
+ name: Dot Recall@1
154
+ - type: dot_recall@3
155
+ value: 0.262531607913134
156
+ name: Dot Recall@3
157
+ - type: dot_recall@5
158
+ value: 0.40182954038375723
159
+ name: Dot Recall@5
160
+ - type: dot_recall@10
161
+ value: 0.5089741682780504
162
+ name: Dot Recall@10
163
+ - type: dot_ndcg@10
164
+ value: 0.24760156704826422
165
+ name: Dot Ndcg@10
166
+ - type: dot_mrr@10
167
+ value: 0.16454750021051548
168
+ name: Dot Mrr@10
169
+ - type: dot_map@100
170
+ value: 0.17684391661589097
171
+ name: Dot Map@100
172
+ ---
173
+
174
+ # SentenceTransformer based on cross-encoder/nli-deberta-v3-large
175
+
176
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cross-encoder/nli-deberta-v3-large](https://huggingface.co/cross-encoder/nli-deberta-v3-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
177
+
178
+ ## Model Details
179
+
180
+ ### Model Description
181
+ - **Model Type:** Sentence Transformer
182
+ - **Base model:** [cross-encoder/nli-deberta-v3-large](https://huggingface.co/cross-encoder/nli-deberta-v3-large) <!-- at revision 52fab31a566138fbd1f6833a4efc1199f875f05e -->
183
+ - **Maximum Sequence Length:** 512 tokens
184
+ - **Output Dimensionality:** 1024 tokens
185
+ - **Similarity Function:** Cosine Similarity
186
+ <!-- - **Training Dataset:** Unknown -->
187
+ <!-- - **Language:** Unknown -->
188
+ <!-- - **License:** Unknown -->
189
+
190
+ ### Model Sources
191
+
192
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
193
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
194
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
195
+
196
+ ### Full Model Architecture
197
+
198
+ ```
199
+ SentenceTransformer(
200
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
201
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
202
+ )
203
+ ```
204
+
205
+ ## Usage
206
+
207
+ ### Direct Usage (Sentence Transformers)
208
+
209
+ First install the Sentence Transformers library:
210
+
211
+ ```bash
212
+ pip install -U sentence-transformers
213
+ ```
214
+
215
+ Then you can load this model and run inference.
216
+ ```python
217
+ from sentence_transformers import SentenceTransformer
218
+
219
+ # Download from the 🤗 Hub
220
+ model = SentenceTransformer("richie-ghost/sbert_ft_cross-encoder-nli-deberta-v3-large")
221
+ # Run inference
222
+ sentences = [
223
+ 'Three men riding a bicycle, tow of them are wearing a helmet.',
224
+ 'There are at least two helmets.',
225
+ 'Accountability measures help establish the financial condition of the government.',
226
+ ]
227
+ embeddings = model.encode(sentences)
228
+ print(embeddings.shape)
229
+ # [3, 1024]
230
+
231
+ # Get the similarity scores for the embeddings
232
+ similarities = model.similarity(embeddings, embeddings)
233
+ print(similarities.shape)
234
+ # [3, 3]
235
+ ```
236
+
237
+ <!--
238
+ ### Direct Usage (Transformers)
239
+
240
+ <details><summary>Click to see the direct usage in Transformers</summary>
241
+
242
+ </details>
243
+ -->
244
+
245
+ <!--
246
+ ### Downstream Usage (Sentence Transformers)
247
+
248
+ You can finetune this model on your own dataset.
249
+
250
+ <details><summary>Click to expand</summary>
251
+
252
+ </details>
253
+ -->
254
+
255
+ <!--
256
+ ### Out-of-Scope Use
257
+
258
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
259
+ -->
260
+
261
+ ## Evaluation
262
+
263
+ ### Metrics
264
+
265
+ #### Information Retrieval
266
+ * Dataset: `eval`
267
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
268
+
269
+ | Metric | Value |
270
+ |:--------------------|:----------|
271
+ | cosine_accuracy@1 | 0.0003 |
272
+ | cosine_accuracy@3 | 0.2843 |
273
+ | cosine_accuracy@5 | 0.4288 |
274
+ | cosine_accuracy@10 | 0.5317 |
275
+ | cosine_precision@1 | 0.0003 |
276
+ | cosine_precision@3 | 0.0948 |
277
+ | cosine_precision@5 | 0.0858 |
278
+ | cosine_precision@10 | 0.0532 |
279
+ | cosine_recall@1 | 0.0003 |
280
+ | cosine_recall@3 | 0.2843 |
281
+ | cosine_recall@5 | 0.4288 |
282
+ | cosine_recall@10 | 0.5317 |
283
+ | cosine_ndcg@10 | 0.26 |
284
+ | cosine_mrr@10 | 0.1732 |
285
+ | **cosine_map@100** | **0.185** |
286
+ | dot_accuracy@1 | 0.0037 |
287
+ | dot_accuracy@3 | 0.2625 |
288
+ | dot_accuracy@5 | 0.4018 |
289
+ | dot_accuracy@10 | 0.509 |
290
+ | dot_precision@1 | 0.0037 |
291
+ | dot_precision@3 | 0.0875 |
292
+ | dot_precision@5 | 0.0804 |
293
+ | dot_precision@10 | 0.0509 |
294
+ | dot_recall@1 | 0.0037 |
295
+ | dot_recall@3 | 0.2625 |
296
+ | dot_recall@5 | 0.4018 |
297
+ | dot_recall@10 | 0.509 |
298
+ | dot_ndcg@10 | 0.2476 |
299
+ | dot_mrr@10 | 0.1645 |
300
+ | dot_map@100 | 0.1768 |
301
+
302
+ <!--
303
+ ## Bias, Risks and Limitations
304
+
305
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
306
+ -->
307
+
308
+ <!--
309
+ ### Recommendations
310
+
311
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
312
+ -->
313
+
314
+ ## Training Details
315
+
316
+ ### Training Dataset
317
+
318
+ #### Unnamed Dataset
319
+
320
+
321
+ * Size: 40,338 training samples
322
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
323
+ * Approximate statistics based on the first 1000 samples:
324
+ | | sentence_0 | sentence_1 |
325
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
326
+ | type | string | string |
327
+ | details | <ul><li>min: 5 tokens</li><li>mean: 19.64 tokens</li><li>max: 129 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.27 tokens</li><li>max: 36 tokens</li></ul> |
328
+ * Samples:
329
+ | sentence_0 | sentence_1 |
330
+ |:---------------------------------------------------------------------------------------|:------------------------------------------------------------|
331
+ | <code>A group of ladies trying to learn how to belly dance.</code> | <code>Several women learn the art of exotic dancing.</code> |
332
+ | <code>A man and a woman are having a conversation, while the man drinks a beer.</code> | <code>The man is drinking.</code> |
333
+ | <code>A brown dog drinks from a water bottle.</code> | <code>A brown cat drinks from a bowl.</code> |
334
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
335
+ ```json
336
+ {
337
+ "scale": 20.0,
338
+ "similarity_fct": "cos_sim"
339
+ }
340
+ ```
341
+
342
+ ### Training Hyperparameters
343
+ #### Non-Default Hyperparameters
344
+
345
+ - `eval_strategy`: steps
346
+ - `per_device_train_batch_size`: 16
347
+ - `per_device_eval_batch_size`: 16
348
+ - `num_train_epochs`: 4
349
+ - `multi_dataset_batch_sampler`: round_robin
350
+
351
+ #### All Hyperparameters
352
+ <details><summary>Click to expand</summary>
353
+
354
+ - `overwrite_output_dir`: False
355
+ - `do_predict`: False
356
+ - `eval_strategy`: steps
357
+ - `prediction_loss_only`: True
358
+ - `per_device_train_batch_size`: 16
359
+ - `per_device_eval_batch_size`: 16
360
+ - `per_gpu_train_batch_size`: None
361
+ - `per_gpu_eval_batch_size`: None
362
+ - `gradient_accumulation_steps`: 1
363
+ - `eval_accumulation_steps`: None
364
+ - `torch_empty_cache_steps`: None
365
+ - `learning_rate`: 5e-05
366
+ - `weight_decay`: 0.0
367
+ - `adam_beta1`: 0.9
368
+ - `adam_beta2`: 0.999
369
+ - `adam_epsilon`: 1e-08
370
+ - `max_grad_norm`: 1
371
+ - `num_train_epochs`: 4
372
+ - `max_steps`: -1
373
+ - `lr_scheduler_type`: linear
374
+ - `lr_scheduler_kwargs`: {}
375
+ - `warmup_ratio`: 0.0
376
+ - `warmup_steps`: 0
377
+ - `log_level`: passive
378
+ - `log_level_replica`: warning
379
+ - `log_on_each_node`: True
380
+ - `logging_nan_inf_filter`: True
381
+ - `save_safetensors`: True
382
+ - `save_on_each_node`: False
383
+ - `save_only_model`: False
384
+ - `restore_callback_states_from_checkpoint`: False
385
+ - `no_cuda`: False
386
+ - `use_cpu`: False
387
+ - `use_mps_device`: False
388
+ - `seed`: 42
389
+ - `data_seed`: None
390
+ - `jit_mode_eval`: False
391
+ - `use_ipex`: False
392
+ - `bf16`: False
393
+ - `fp16`: False
394
+ - `fp16_opt_level`: O1
395
+ - `half_precision_backend`: auto
396
+ - `bf16_full_eval`: False
397
+ - `fp16_full_eval`: False
398
+ - `tf32`: None
399
+ - `local_rank`: 0
400
+ - `ddp_backend`: None
401
+ - `tpu_num_cores`: None
402
+ - `tpu_metrics_debug`: False
403
+ - `debug`: []
404
+ - `dataloader_drop_last`: False
405
+ - `dataloader_num_workers`: 0
406
+ - `dataloader_prefetch_factor`: None
407
+ - `past_index`: -1
408
+ - `disable_tqdm`: False
409
+ - `remove_unused_columns`: True
410
+ - `label_names`: None
411
+ - `load_best_model_at_end`: False
412
+ - `ignore_data_skip`: False
413
+ - `fsdp`: []
414
+ - `fsdp_min_num_params`: 0
415
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
416
+ - `fsdp_transformer_layer_cls_to_wrap`: None
417
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
418
+ - `deepspeed`: None
419
+ - `label_smoothing_factor`: 0.0
420
+ - `optim`: adamw_torch
421
+ - `optim_args`: None
422
+ - `adafactor`: False
423
+ - `group_by_length`: False
424
+ - `length_column_name`: length
425
+ - `ddp_find_unused_parameters`: None
426
+ - `ddp_bucket_cap_mb`: None
427
+ - `ddp_broadcast_buffers`: False
428
+ - `dataloader_pin_memory`: True
429
+ - `dataloader_persistent_workers`: False
430
+ - `skip_memory_metrics`: True
431
+ - `use_legacy_prediction_loop`: False
432
+ - `push_to_hub`: False
433
+ - `resume_from_checkpoint`: None
434
+ - `hub_model_id`: None
435
+ - `hub_strategy`: every_save
436
+ - `hub_private_repo`: False
437
+ - `hub_always_push`: False
438
+ - `gradient_checkpointing`: False
439
+ - `gradient_checkpointing_kwargs`: None
440
+ - `include_inputs_for_metrics`: False
441
+ - `eval_do_concat_batches`: True
442
+ - `fp16_backend`: auto
443
+ - `push_to_hub_model_id`: None
444
+ - `push_to_hub_organization`: None
445
+ - `mp_parameters`:
446
+ - `auto_find_batch_size`: False
447
+ - `full_determinism`: False
448
+ - `torchdynamo`: None
449
+ - `ray_scope`: last
450
+ - `ddp_timeout`: 1800
451
+ - `torch_compile`: False
452
+ - `torch_compile_backend`: None
453
+ - `torch_compile_mode`: None
454
+ - `dispatch_batches`: None
455
+ - `split_batches`: None
456
+ - `include_tokens_per_second`: False
457
+ - `include_num_input_tokens_seen`: False
458
+ - `neftune_noise_alpha`: None
459
+ - `optim_target_modules`: None
460
+ - `batch_eval_metrics`: False
461
+ - `eval_on_start`: False
462
+ - `eval_use_gather_object`: False
463
+ - `batch_sampler`: batch_sampler
464
+ - `multi_dataset_batch_sampler`: round_robin
465
+
466
+ </details>
467
+
468
+ ### Training Logs
469
+ | Epoch | Step | Training Loss | eval_cosine_map@100 |
470
+ |:------:|:-----:|:-------------:|:-------------------:|
471
+ | 0.1983 | 500 | 1.2356 | 0.0873 |
472
+ | 0.3965 | 1000 | 0.4077 | 0.1200 |
473
+ | 0.5948 | 1500 | 0.3205 | 0.1280 |
474
+ | 0.7930 | 2000 | 0.2576 | 0.1416 |
475
+ | 0.9913 | 2500 | 0.2435 | 0.1476 |
476
+ | 1.0 | 2522 | - | 0.1492 |
477
+ | 1.1895 | 3000 | 0.1821 | 0.1553 |
478
+ | 1.3878 | 3500 | 0.1237 | 0.1589 |
479
+ | 1.5860 | 4000 | 0.1074 | 0.1603 |
480
+ | 1.7843 | 4500 | 0.0905 | 0.1654 |
481
+ | 1.9826 | 5000 | 0.0783 | 0.1685 |
482
+ | 2.0 | 5044 | - | 0.1683 |
483
+ | 2.1808 | 5500 | 0.0583 | 0.1698 |
484
+ | 2.3791 | 6000 | 0.0432 | 0.1746 |
485
+ | 2.5773 | 6500 | 0.0365 | 0.1749 |
486
+ | 2.7756 | 7000 | 0.0303 | 0.1791 |
487
+ | 2.9738 | 7500 | 0.0276 | 0.1788 |
488
+ | 3.0 | 7566 | - | 0.1805 |
489
+ | 3.1721 | 8000 | 0.02 | 0.1807 |
490
+ | 3.3703 | 8500 | 0.013 | 0.1823 |
491
+ | 3.5686 | 9000 | 0.0123 | 0.1839 |
492
+ | 3.7669 | 9500 | 0.0099 | 0.1852 |
493
+ | 3.9651 | 10000 | 0.01 | 0.1850 |
494
+ | 4.0 | 10088 | - | 0.1850 |
495
+
496
+
497
+ ### Framework Versions
498
+ - Python: 3.10.12
499
+ - Sentence Transformers: 3.2.1
500
+ - Transformers: 4.44.2
501
+ - PyTorch: 2.5.0+cu121
502
+ - Accelerate: 1.0.1
503
+ - Datasets: 3.0.2
504
+ - Tokenizers: 0.19.1
505
+
506
+ ## Citation
507
+
508
+ ### BibTeX
509
+
510
+ #### Sentence Transformers
511
+ ```bibtex
512
+ @inproceedings{reimers-2019-sentence-bert,
513
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
514
+ author = "Reimers, Nils and Gurevych, Iryna",
515
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
516
+ month = "11",
517
+ year = "2019",
518
+ publisher = "Association for Computational Linguistics",
519
+ url = "https://arxiv.org/abs/1908.10084",
520
+ }
521
+ ```
522
+
523
+ #### MultipleNegativesRankingLoss
524
+ ```bibtex
525
+ @misc{henderson2017efficient,
526
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
527
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
528
+ year={2017},
529
+ eprint={1705.00652},
530
+ archivePrefix={arXiv},
531
+ primaryClass={cs.CL}
532
+ }
533
+ ```
534
+
535
+ <!--
536
+ ## Glossary
537
+
538
+ *Clearly define terms in order to be accessible across audiences.*
539
+ -->
540
+
541
+ <!--
542
+ ## Model Card Authors
543
+
544
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
545
+ -->
546
+
547
+ <!--
548
+ ## Model Card Contact
549
+
550
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
551
+ -->
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 128000
3
+ }
config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/content/drive/MyDrive/cross-encoder-nli-deberta-v3-large/save_pretrained",
3
+ "architectures": [
4
+ "DebertaV2Model"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 1024,
10
+ "id2label": {
11
+ "0": "contradiction",
12
+ "1": "entailment",
13
+ "2": "neutral"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "contradiction": 0,
19
+ "entailment": 1,
20
+ "neutral": 2
21
+ },
22
+ "layer_norm_eps": 1e-07,
23
+ "max_position_embeddings": 512,
24
+ "max_relative_positions": -1,
25
+ "model_type": "deberta-v2",
26
+ "norm_rel_ebd": "layer_norm",
27
+ "num_attention_heads": 16,
28
+ "num_hidden_layers": 24,
29
+ "pad_token_id": 0,
30
+ "pooler_dropout": 0,
31
+ "pooler_hidden_act": "gelu",
32
+ "pooler_hidden_size": 1024,
33
+ "pos_att_type": [
34
+ "p2c",
35
+ "c2p"
36
+ ],
37
+ "position_biased_input": false,
38
+ "position_buckets": 256,
39
+ "relative_attention": true,
40
+ "share_att_key": true,
41
+ "torch_dtype": "float32",
42
+ "transformers_version": "4.44.2",
43
+ "type_vocab_size": 0,
44
+ "vocab_size": 128100
45
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:619a968147cbf44d673977b6b3dd7391112a1dff15f1618a086c84e7ac717fb0
3
+ size 1736094384
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128000": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": false,
48
+ "eos_token": "[SEP]",
49
+ "mask_token": "[MASK]",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "sp_model_kwargs": {},
58
+ "split_by_punct": false,
59
+ "stride": 0,
60
+ "tokenizer_class": "DebertaV2Tokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]",
64
+ "vocab_type": "spm"
65
+ }