---
base_model: cross-encoder/nli-deberta-v3-large
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:40338
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: '"Rumpelstilsken, I command the sun to set!" He seemed to sense
a hesitation in his mind, and then the impression of jeweled gears turning.'
sentences:
- A football game is playing.
- He sensed hesitation when commanding Rumpelstiltskin.
- I ran and he saw me immediately.
- source_sentence: A woman wears sunglasses and a black coat as she walks.
sentences:
- The lady in black walks while wearing her shades.
- Two women were walking
- The people are running towards the mountains.
- source_sentence: The Congress relies on GAO to examine virtually every federal program,
activity, and policy, as well as institutions that rely on federal funds.
sentences:
- The men are standing in line at the restaurant.
- GAO helps Congress.
- Tide permitting, view the shrine from its base to appreciate its full size.
- source_sentence: The resort was named after Louis James Fraser, an English adventurer
and scoundrel, who dealt in mule hides, tin, opium, and gambling.
sentences:
- A man in front of people.
- The resort was named after an English adventurer and scoundrel.
- A woman is holding flowers by two men on a bench.
- source_sentence: Three men riding a bicycle, tow of them are wearing a helmet.
sentences:
- Accountability measures help establish the financial condition of the government.
- A man is pushing a truck.
- There are at least two helmets.
model-index:
- name: SentenceTransformer based on cross-encoder/nli-deberta-v3-large
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: eval
type: eval
metrics:
- type: cosine_accuracy@1
value: 0.0003470672814715653
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2842728940453171
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.42875204521790866
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5317318657345431
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0003470672814715653
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.09475763134843902
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.08575040904358174
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.053173186573454316
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0003470672814715653
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2842728940453171
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.42875204521790866
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5317318657345431
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2599623819220365
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.17320152646642903
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1849889511878054
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.003718578015766771
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.262531607913134
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.40182954038375723
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.5089741682780504
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.003718578015766771
name: Dot Precision@1
- type: dot_precision@3
value: 0.08751053597104465
name: Dot Precision@3
- type: dot_precision@5
value: 0.08036590807675144
name: Dot Precision@5
- type: dot_precision@10
value: 0.050897416827805034
name: Dot Precision@10
- type: dot_recall@1
value: 0.003718578015766771
name: Dot Recall@1
- type: dot_recall@3
value: 0.262531607913134
name: Dot Recall@3
- type: dot_recall@5
value: 0.40182954038375723
name: Dot Recall@5
- type: dot_recall@10
value: 0.5089741682780504
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.24760156704826422
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.16454750021051548
name: Dot Mrr@10
- type: dot_map@100
value: 0.17684391661589097
name: Dot Map@100
---
# SentenceTransformer based on cross-encoder/nli-deberta-v3-large
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cross-encoder/nli-deberta-v3-large](https://huggingface.co/cross-encoder/nli-deberta-v3-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [cross-encoder/nli-deberta-v3-large](https://huggingface.co/cross-encoder/nli-deberta-v3-large)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("richie-ghost/sbert_ft_cross-encoder-nli-deberta-v3-large")
# Run inference
sentences = [
'Three men riding a bicycle, tow of them are wearing a helmet.',
'There are at least two helmets.',
'Accountability measures help establish the financial condition of the government.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `eval`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.0003 |
| cosine_accuracy@3 | 0.2843 |
| cosine_accuracy@5 | 0.4288 |
| cosine_accuracy@10 | 0.5317 |
| cosine_precision@1 | 0.0003 |
| cosine_precision@3 | 0.0948 |
| cosine_precision@5 | 0.0858 |
| cosine_precision@10 | 0.0532 |
| cosine_recall@1 | 0.0003 |
| cosine_recall@3 | 0.2843 |
| cosine_recall@5 | 0.4288 |
| cosine_recall@10 | 0.5317 |
| cosine_ndcg@10 | 0.26 |
| cosine_mrr@10 | 0.1732 |
| **cosine_map@100** | **0.185** |
| dot_accuracy@1 | 0.0037 |
| dot_accuracy@3 | 0.2625 |
| dot_accuracy@5 | 0.4018 |
| dot_accuracy@10 | 0.509 |
| dot_precision@1 | 0.0037 |
| dot_precision@3 | 0.0875 |
| dot_precision@5 | 0.0804 |
| dot_precision@10 | 0.0509 |
| dot_recall@1 | 0.0037 |
| dot_recall@3 | 0.2625 |
| dot_recall@5 | 0.4018 |
| dot_recall@10 | 0.509 |
| dot_ndcg@10 | 0.2476 |
| dot_mrr@10 | 0.1645 |
| dot_map@100 | 0.1768 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 40,338 training samples
* Columns: sentence_0
and sentence_1
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
A group of ladies trying to learn how to belly dance.
| Several women learn the art of exotic dancing.
|
| A man and a woman are having a conversation, while the man drinks a beer.
| The man is drinking.
|
| A brown dog drinks from a water bottle.
| A brown cat drinks from a bowl.
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters