Text Generation
Transformers
Japanese
English
llama
gptq
tianyuz commited on
Commit
b93d490
·
1 Parent(s): dd5f5e7
README.md ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
3
+ license: llama2
4
+ language:
5
+ - ja
6
+ - en
7
+ inference: false
8
+ datasets:
9
+ - databricks/databricks-dolly-15k
10
+ - kunishou/databricks-dolly-15k-ja
11
+ - izumi-lab/llm-japanese-dataset
12
+ ---
13
+
14
+ # `rinna/youri-7b-chat-gptq`
15
+
16
+ ![rinna-icon](./rinna.png)
17
+
18
+ # Overview
19
+ `rinna/youri-7b-chat-gptq` is the quantized model for [`rinna/youri-7b-chat`](https://huggingface.co/rinna/youri-7b-chat) using AutoGPTQ. The quantized version is 4x smaller than the original model and thus requires less memory and provides faster inference.
20
+
21
+ * **Model architecture**
22
+
23
+ Refer to the [original model](https://huggingface.co/rinna/youri-7b-chat) for architecture details.
24
+
25
+ * **Fine-tuning**
26
+
27
+ Refer to the [original model](https://huggingface.co/rinna/youri-7b-chat) for fine-tuning details.
28
+
29
+ * **Authors**
30
+
31
+ - [Toshiaki Wakatsuki](https://huggingface.co/t-w)
32
+ - [Tianyu Zhao](https://huggingface.co/tianyuz)
33
+ - [Kei Sawada](https://huggingface.co/keisawada)
34
+
35
+ ---
36
+
37
+ # Benchmarking
38
+
39
+ Our evaluation experiments show that the quantization yields slight performance degradation on downstream tasks.
40
+
41
+ Results will be updated soon.
42
+
43
+ ---
44
+
45
+ # How to use the model
46
+
47
+ ~~~~python
48
+ import torch
49
+ from transformers import AutoTokenizer
50
+ from auto_gptq import AutoGPTQForCausalLM
51
+
52
+ tokenizer = AutoTokenizer.from_pretrained("rinna/youri-7b-chat-gptq")
53
+ model = AutoGPTQForCausalLM.from_quantized("rinna/youri-7b-chat-gptq", use_safetensors=True)
54
+
55
+ instruction = "次の日本語を英語に翻訳してください。"
56
+ input = "自然言語による指示に基づきタスクが解けるよう学習させることを Instruction tuning と呼びます。"
57
+
58
+ context = [
59
+ {
60
+ "speaker": "設定",
61
+ "text": instruction
62
+ },
63
+ {
64
+ "speaker": "ユーザー",
65
+ "text": input
66
+ }
67
+ ]
68
+ prompt = [
69
+ f"{uttr['speaker']}: {uttr['text']}"
70
+ for uttr in context
71
+ ]
72
+ prompt = "\n".join(prompt)
73
+ prompt = (
74
+ prompt
75
+ + "\n"
76
+ + "システム: "
77
+ )
78
+ token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
79
+
80
+ with torch.no_grad():
81
+ output_ids = model.generate(
82
+ input_ids=token_ids.to(model.device),
83
+ max_new_tokens=200,
84
+ do_sample=True,
85
+ temperature=0.5,
86
+ pad_token_id=tokenizer.pad_token_id,
87
+ bos_token_id=tokenizer.bos_token_id,
88
+ eos_token_id=tokenizer.eos_token_id
89
+ )
90
+
91
+ output = tokenizer.decode(output_ids.tolist()[0])
92
+ print(output)
93
+
94
+ output = output[len(prompt):-len("</s>")].strip()
95
+ input = "大規模言語モデル(だいきぼげんごモデル、英: large language model、LLM)は、多数のパラメータ(数千万から数十億)を持つ人工ニューラルネットワークで構成されるコンピュータ言語モデルで、膨大なラベルなしテキストを使用して自己教師あり学習または半教師あり学習によって訓練が行われる。"
96
+
97
+ context.extend([
98
+ {
99
+ "speaker": "システム",
100
+ "text": output
101
+ },
102
+ {
103
+ "speaker": "ユーザー",
104
+ "text": input
105
+ }
106
+ ])
107
+ prompt = [
108
+ f"{uttr['speaker']}: {uttr['text']}"
109
+ for uttr in context
110
+ ]
111
+ prompt = "\n".join(prompt)
112
+ prompt = (
113
+ prompt
114
+ + "\n"
115
+ + "システム: "
116
+ )
117
+ token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
118
+
119
+ with torch.no_grad():
120
+ output_ids = model.generate(
121
+ input_ids=token_ids.to(model.device),
122
+ max_new_tokens=200,
123
+ do_sample=True,
124
+ temperature=0.5,
125
+ pad_token_id=tokenizer.pad_token_id,
126
+ bos_token_id=tokenizer.bos_token_id,
127
+ eos_token_id=tokenizer.eos_token_id
128
+ )
129
+
130
+ output = tokenizer.decode(output_ids.tolist()[0])
131
+ print(output)
132
+ ~~~~
133
+
134
+ ---
135
+
136
+ # Tokenization
137
+ The model uses the original llama-2 tokenizer.
138
+
139
+ ---
140
+
141
+ # How to cite
142
+ ~~~
143
+ @misc{RinnaYouri7bChatGPTQ,
144
+ url={https://huggingface.co/rinna/youri-7b-chat-gptq},
145
+ title={rinna/youri-7b-chat-gptq},
146
+ author={Wakatsuki, Toshiaki and Zhao, Tianyu and Sawada, Kei}
147
+ }
148
+ ~~~
149
+ ---
150
+
151
+ # License
152
+ [The llama2 license](https://ai.meta.com/llama/license/)
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 4096,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "num_key_value_heads": 32,
17
+ "pad_token_id": 0,
18
+ "pretraining_tp": 1,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_scaling": null,
21
+ "rope_theta": 10000.0,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float16",
24
+ "transformers_version": "4.34.1",
25
+ "use_cache": true,
26
+ "vocab_size": 32000
27
+ }
gptq_model-4bit-128g.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9d8b7a248b087966f619052c5c778c377d71ec02365beb3b127248f50e99d09
3
+ size 3896714728
quantize_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "group_size": 128,
4
+ "damp_percent": 0.01,
5
+ "desc_act": false,
6
+ "static_groups": false,
7
+ "sym": true,
8
+ "true_sequential": true,
9
+ "model_name_or_path": null,
10
+ "model_file_base_name": null
11
+ }
rinna.png ADDED
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ }
27
+ },
28
+ "bos_token": "<s>",
29
+ "clean_up_tokenization_spaces": false,
30
+ "eos_token": "</s>",
31
+ "legacy": false,
32
+ "model_max_length": 1000000000000000019884624838656,
33
+ "pad_token": null,
34
+ "padding_side": "right",
35
+ "sp_model_kwargs": {},
36
+ "tokenizer_class": "LlamaTokenizer",
37
+ "unk_token": "<unk>",
38
+ "use_default_system_prompt": true
39
+ }