File size: 2,392 Bytes
f54e1a6 0837d79 f54e1a6 0837d79 f54e1a6 0837d79 f54e1a6 0837d79 f54e1a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
language:
- hi
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_Albanian
metrics:
- wer
model-index:
- name: Whisper large-v2 Albanian Test
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 16 Albanian
type: mozilla-foundation/common_voice_11_Albanian
args: 'config: hi, split: test'
metrics:
- name: Wer
type: wer
value: 34.05295315682281
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper large-v2 Test
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 16 Albanian dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7073
- Wer: 34.0530
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1135 | 4.63 | 500 | 0.6519 | 44.8880 |
| 0.02 | 9.26 | 1000 | 0.6575 | 39.3483 |
| 0.0075 | 13.89 | 1500 | 0.6073 | 35.6823 |
| 0.0016 | 18.52 | 2000 | 0.6347 | 34.9084 |
| 0.0008 | 23.15 | 2500 | 0.6484 | 34.9491 |
| 0.0001 | 27.78 | 3000 | 0.6765 | 34.4196 |
| 0.0001 | 32.41 | 3500 | 0.6897 | 33.9308 |
| 0.0001 | 37.04 | 4000 | 0.6988 | 34.1752 |
| 0.0001 | 41.67 | 4500 | 0.7048 | 33.9715 |
| 0.0001 | 46.3 | 5000 | 0.7073 | 34.0530 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|