riteshbehera857
commited on
Commit
•
cb56e9b
1
Parent(s):
632e133
End of training
Browse files- README.md +87 -0
- config.json +52 -0
- model.safetensors +3 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +56 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: riteshbehera857/layoutlm-base-uncased-finetuned-invoices-1
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: layoutlm-base-uncased-finetuned-invoices-2
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# layoutlm-base-uncased-finetuned-invoices-2
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [riteshbehera857/layoutlm-base-uncased-finetuned-invoices-1](https://huggingface.co/riteshbehera857/layoutlm-base-uncased-finetuned-invoices-1) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0342
|
20 |
+
- B-adress: {'precision': 0.9669491525423729, 'recall': 0.971063829787234, 'f1': 0.9690021231422504, 'number': 1175}
|
21 |
+
- B-name: {'precision': 0.9795918367346939, 'recall': 0.9739130434782609, 'f1': 0.9767441860465117, 'number': 345}
|
22 |
+
- Gst no: {'precision': 1.0, 'recall': 0.9689922480620154, 'f1': 0.9842519685039369, 'number': 129}
|
23 |
+
- Invoice no: {'precision': 0.9702970297029703, 'recall': 0.9607843137254902, 'f1': 0.9655172413793103, 'number': 102}
|
24 |
+
- Order date: {'precision': 0.9672131147540983, 'recall': 0.9752066115702479, 'f1': 0.9711934156378601, 'number': 121}
|
25 |
+
- Order id: {'precision': 0.9770992366412213, 'recall': 0.9922480620155039, 'f1': 0.9846153846153846, 'number': 129}
|
26 |
+
- S-adress: {'precision': 0.978021978021978, 'recall': 0.9941489361702127, 'f1': 0.9860195199155896, 'number': 1880}
|
27 |
+
- S-name: {'precision': 0.9860834990059643, 'recall': 0.9575289575289575, 'f1': 0.9715964740450539, 'number': 518}
|
28 |
+
- Total gross: {'precision': 0.9298245614035088, 'recall': 1.0, 'f1': 0.9636363636363636, 'number': 53}
|
29 |
+
- Total net: {'precision': 0.9923076923076923, 'recall': 1.0, 'f1': 0.9961389961389961, 'number': 129}
|
30 |
+
- Overall Precision: 0.9761
|
31 |
+
- Overall Recall: 0.9808
|
32 |
+
- Overall F1: 0.9784
|
33 |
+
- Overall Accuracy: 0.9944
|
34 |
+
|
35 |
+
## Model description
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Intended uses & limitations
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training and evaluation data
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
|
49 |
+
### Training hyperparameters
|
50 |
+
|
51 |
+
The following hyperparameters were used during training:
|
52 |
+
- learning_rate: 5e-05
|
53 |
+
- train_batch_size: 16
|
54 |
+
- eval_batch_size: 8
|
55 |
+
- seed: 42
|
56 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
57 |
+
- lr_scheduler_type: linear
|
58 |
+
- lr_scheduler_warmup_steps: 10
|
59 |
+
- num_epochs: 15
|
60 |
+
|
61 |
+
### Training results
|
62 |
+
|
63 |
+
| Training Loss | Epoch | Step | Validation Loss | B-adress | B-name | Gst no | Invoice no | Order date | Order id | S-adress | S-name | Total gross | Total net | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
64 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
65 |
+
| 0.0192 | 1.0 | 19 | 0.0257 | {'precision': 0.9559322033898305, 'recall': 0.96, 'f1': 0.9579617834394905, 'number': 1175} | {'precision': 0.9713467048710601, 'recall': 0.9826086956521739, 'f1': 0.9769452449567723, 'number': 345} | {'precision': 1.0, 'recall': 0.9844961240310077, 'f1': 0.9921875, 'number': 129} | {'precision': 0.9615384615384616, 'recall': 0.9803921568627451, 'f1': 0.970873786407767, 'number': 102} | {'precision': 0.9752066115702479, 'recall': 0.9752066115702479, 'f1': 0.9752066115702479, 'number': 121} | {'precision': 0.9696969696969697, 'recall': 0.9922480620155039, 'f1': 0.9808429118773947, 'number': 129} | {'precision': 0.9789251844046365, 'recall': 0.9882978723404255, 'f1': 0.9835892006352567, 'number': 1880} | {'precision': 0.9899396378269618, 'recall': 0.9498069498069498, 'f1': 0.9694581280788177, 'number': 518} | {'precision': 0.8688524590163934, 'recall': 1.0, 'f1': 0.9298245614035088, 'number': 53} | {'precision': 1.0, 'recall': 0.9922480620155039, 'f1': 0.9961089494163424, 'number': 129} | 0.9726 | 0.9760 | 0.9743 | 0.9932 |
|
66 |
+
| 0.0179 | 2.0 | 38 | 0.0272 | {'precision': 0.9562657695542472, 'recall': 0.9676595744680851, 'f1': 0.9619289340101522, 'number': 1175} | {'precision': 0.9740634005763689, 'recall': 0.9797101449275363, 'f1': 0.976878612716763, 'number': 345} | {'precision': 1.0, 'recall': 0.9844961240310077, 'f1': 0.9921875, 'number': 129} | {'precision': 0.9705882352941176, 'recall': 0.9705882352941176, 'f1': 0.9705882352941176, 'number': 102} | {'precision': 0.9754098360655737, 'recall': 0.9834710743801653, 'f1': 0.9794238683127573, 'number': 121} | {'precision': 0.9770992366412213, 'recall': 0.9922480620155039, 'f1': 0.9846153846153846, 'number': 129} | {'precision': 0.982086406743941, 'recall': 0.9914893617021276, 'f1': 0.9867654843832716, 'number': 1880} | {'precision': 0.9900199600798403, 'recall': 0.9575289575289575, 'f1': 0.9735034347399412, 'number': 518} | {'precision': 0.8833333333333333, 'recall': 1.0, 'f1': 0.9380530973451328, 'number': 53} | {'precision': 1.0, 'recall': 0.9922480620155039, 'f1': 0.9961089494163424, 'number': 129} | 0.9748 | 0.9799 | 0.9774 | 0.9940 |
|
67 |
+
| 0.0149 | 3.0 | 57 | 0.0284 | {'precision': 0.9647766323024055, 'recall': 0.9557446808510638, 'f1': 0.960239418554938, 'number': 1175} | {'precision': 0.9794117647058823, 'recall': 0.9652173913043478, 'f1': 0.9722627737226278, 'number': 345} | {'precision': 1.0, 'recall': 0.9844961240310077, 'f1': 0.9921875, 'number': 129} | {'precision': 0.9611650485436893, 'recall': 0.9705882352941176, 'f1': 0.9658536585365853, 'number': 102} | {'precision': 0.9754098360655737, 'recall': 0.9834710743801653, 'f1': 0.9794238683127573, 'number': 121} | {'precision': 0.9770992366412213, 'recall': 0.9922480620155039, 'f1': 0.9846153846153846, 'number': 129} | {'precision': 0.9744791666666667, 'recall': 0.9952127659574468, 'f1': 0.9847368421052631, 'number': 1880} | {'precision': 0.99, 'recall': 0.9555984555984556, 'f1': 0.9724950884086443, 'number': 518} | {'precision': 0.9298245614035088, 'recall': 1.0, 'f1': 0.9636363636363636, 'number': 53} | {'precision': 0.9847328244274809, 'recall': 1.0, 'f1': 0.9923076923076923, 'number': 129} | 0.9743 | 0.9773 | 0.9758 | 0.9935 |
|
68 |
+
| 0.0135 | 4.0 | 76 | 0.0295 | {'precision': 0.9531380753138076, 'recall': 0.9693617021276596, 'f1': 0.9611814345991562, 'number': 1175} | {'precision': 0.9796511627906976, 'recall': 0.9768115942028985, 'f1': 0.9782293178519593, 'number': 345} | {'precision': 1.0, 'recall': 0.9767441860465116, 'f1': 0.988235294117647, 'number': 129} | {'precision': 0.9705882352941176, 'recall': 0.9705882352941176, 'f1': 0.9705882352941176, 'number': 102} | {'precision': 0.9672131147540983, 'recall': 0.9752066115702479, 'f1': 0.9711934156378601, 'number': 121} | {'precision': 0.9552238805970149, 'recall': 0.9922480620155039, 'f1': 0.9733840304182508, 'number': 129} | {'precision': 0.9760166840458812, 'recall': 0.9957446808510638, 'f1': 0.985781990521327, 'number': 1880} | {'precision': 0.988, 'recall': 0.9536679536679536, 'f1': 0.9705304518664047, 'number': 518} | {'precision': 0.9137931034482759, 'recall': 1.0, 'f1': 0.9549549549549551, 'number': 53} | {'precision': 0.9847328244274809, 'recall': 1.0, 'f1': 0.9923076923076923, 'number': 129} | 0.9708 | 0.9812 | 0.9760 | 0.9936 |
|
69 |
+
| 0.01 | 5.0 | 95 | 0.0308 | {'precision': 0.9619611158072696, 'recall': 0.9685106382978723, 'f1': 0.9652247667514843, 'number': 1175} | {'precision': 0.9795918367346939, 'recall': 0.9739130434782609, 'f1': 0.9767441860465117, 'number': 345} | {'precision': 1.0, 'recall': 0.9767441860465116, 'f1': 0.988235294117647, 'number': 129} | {'precision': 0.9519230769230769, 'recall': 0.9705882352941176, 'f1': 0.9611650485436893, 'number': 102} | {'precision': 0.9752066115702479, 'recall': 0.9752066115702479, 'f1': 0.9752066115702479, 'number': 121} | {'precision': 0.9770992366412213, 'recall': 0.9922480620155039, 'f1': 0.9846153846153846, 'number': 129} | {'precision': 0.9739311783107404, 'recall': 0.9936170212765958, 'f1': 0.9836756187467087, 'number': 1880} | {'precision': 0.9860834990059643, 'recall': 0.9575289575289575, 'f1': 0.9715964740450539, 'number': 518} | {'precision': 0.9298245614035088, 'recall': 1.0, 'f1': 0.9636363636363636, 'number': 53} | {'precision': 0.9847328244274809, 'recall': 1.0, 'f1': 0.9923076923076923, 'number': 129} | 0.9727 | 0.9804 | 0.9765 | 0.9938 |
|
70 |
+
| 0.009 | 6.0 | 114 | 0.0315 | {'precision': 0.9667235494880546, 'recall': 0.9642553191489361, 'f1': 0.9654878568385172, 'number': 1175} | {'precision': 0.9795918367346939, 'recall': 0.9739130434782609, 'f1': 0.9767441860465117, 'number': 345} | {'precision': 1.0, 'recall': 0.9689922480620154, 'f1': 0.9842519685039369, 'number': 129} | {'precision': 0.9705882352941176, 'recall': 0.9705882352941176, 'f1': 0.9705882352941176, 'number': 102} | {'precision': 0.9672131147540983, 'recall': 0.9752066115702479, 'f1': 0.9711934156378601, 'number': 121} | {'precision': 0.9624060150375939, 'recall': 0.9922480620155039, 'f1': 0.9770992366412213, 'number': 129} | {'precision': 0.9714434060228453, 'recall': 0.9952127659574468, 'f1': 0.9831844456121913, 'number': 1880} | {'precision': 0.9860557768924303, 'recall': 0.9555984555984556, 'f1': 0.9705882352941176, 'number': 518} | {'precision': 0.9298245614035088, 'recall': 1.0, 'f1': 0.9636363636363636, 'number': 53} | {'precision': 0.9847328244274809, 'recall': 1.0, 'f1': 0.9923076923076923, 'number': 129} | 0.9727 | 0.9795 | 0.9761 | 0.9936 |
|
71 |
+
| 0.0081 | 7.0 | 133 | 0.0322 | {'precision': 0.966893039049236, 'recall': 0.9693617021276596, 'f1': 0.9681257968550786, 'number': 1175} | {'precision': 0.9739130434782609, 'recall': 0.9739130434782609, 'f1': 0.9739130434782609, 'number': 345} | {'precision': 1.0, 'recall': 0.9689922480620154, 'f1': 0.9842519685039369, 'number': 129} | {'precision': 0.9607843137254902, 'recall': 0.9607843137254902, 'f1': 0.9607843137254902, 'number': 102} | {'precision': 0.9672131147540983, 'recall': 0.9752066115702479, 'f1': 0.9711934156378601, 'number': 121} | {'precision': 0.9624060150375939, 'recall': 0.9922480620155039, 'f1': 0.9770992366412213, 'number': 129} | {'precision': 0.9785002621919245, 'recall': 0.9925531914893617, 'f1': 0.9854766305782942, 'number': 1880} | {'precision': 0.9860834990059643, 'recall': 0.9575289575289575, 'f1': 0.9715964740450539, 'number': 518} | {'precision': 0.9298245614035088, 'recall': 1.0, 'f1': 0.9636363636363636, 'number': 53} | {'precision': 0.9847328244274809, 'recall': 1.0, 'f1': 0.9923076923076923, 'number': 129} | 0.9750 | 0.9797 | 0.9774 | 0.9940 |
|
72 |
+
| 0.0069 | 8.0 | 152 | 0.0324 | {'precision': 0.9658994032395567, 'recall': 0.9642553191489361, 'f1': 0.9650766609880749, 'number': 1175} | {'precision': 0.9767441860465116, 'recall': 0.9739130434782609, 'f1': 0.9753265602322205, 'number': 345} | {'precision': 1.0, 'recall': 0.9689922480620154, 'f1': 0.9842519685039369, 'number': 129} | {'precision': 0.9702970297029703, 'recall': 0.9607843137254902, 'f1': 0.9655172413793103, 'number': 102} | {'precision': 0.959349593495935, 'recall': 0.9752066115702479, 'f1': 0.9672131147540983, 'number': 121} | {'precision': 0.9696969696969697, 'recall': 0.9922480620155039, 'f1': 0.9808429118773947, 'number': 129} | {'precision': 0.9769633507853404, 'recall': 0.9925531914893617, 'f1': 0.9846965699208443, 'number': 1880} | {'precision': 0.9860834990059643, 'recall': 0.9575289575289575, 'f1': 0.9715964740450539, 'number': 518} | {'precision': 0.9298245614035088, 'recall': 1.0, 'f1': 0.9636363636363636, 'number': 53} | {'precision': 0.9847328244274809, 'recall': 1.0, 'f1': 0.9923076923076923, 'number': 129} | 0.9746 | 0.9784 | 0.9765 | 0.9938 |
|
73 |
+
| 0.0064 | 9.0 | 171 | 0.0344 | {'precision': 0.9636209813874789, 'recall': 0.9693617021276596, 'f1': 0.9664828171404328, 'number': 1175} | {'precision': 0.9767441860465116, 'recall': 0.9739130434782609, 'f1': 0.9753265602322205, 'number': 345} | {'precision': 1.0, 'recall': 0.9689922480620154, 'f1': 0.9842519685039369, 'number': 129} | {'precision': 0.9705882352941176, 'recall': 0.9705882352941176, 'f1': 0.9705882352941176, 'number': 102} | {'precision': 0.9672131147540983, 'recall': 0.9752066115702479, 'f1': 0.9711934156378601, 'number': 121} | {'precision': 0.9696969696969697, 'recall': 0.9922480620155039, 'f1': 0.9808429118773947, 'number': 129} | {'precision': 0.9744791666666667, 'recall': 0.9952127659574468, 'f1': 0.9847368421052631, 'number': 1880} | {'precision': 0.9860557768924303, 'recall': 0.9555984555984556, 'f1': 0.9705882352941176, 'number': 518} | {'precision': 0.9137931034482759, 'recall': 1.0, 'f1': 0.9549549549549551, 'number': 53} | {'precision': 0.9847328244274809, 'recall': 1.0, 'f1': 0.9923076923076923, 'number': 129} | 0.9729 | 0.9808 | 0.9768 | 0.9940 |
|
74 |
+
| 0.0058 | 10.0 | 190 | 0.0338 | {'precision': 0.9652836579170194, 'recall': 0.9702127659574468, 'f1': 0.9677419354838709, 'number': 1175} | {'precision': 0.9795918367346939, 'recall': 0.9739130434782609, 'f1': 0.9767441860465117, 'number': 345} | {'precision': 1.0, 'recall': 0.9689922480620154, 'f1': 0.9842519685039369, 'number': 129} | {'precision': 0.9607843137254902, 'recall': 0.9607843137254902, 'f1': 0.9607843137254902, 'number': 102} | {'precision': 0.959349593495935, 'recall': 0.9752066115702479, 'f1': 0.9672131147540983, 'number': 121} | {'precision': 0.9624060150375939, 'recall': 0.9922480620155039, 'f1': 0.9770992366412213, 'number': 129} | {'precision': 0.9785115303983228, 'recall': 0.9930851063829788, 'f1': 0.9857444561774024, 'number': 1880} | {'precision': 0.9860834990059643, 'recall': 0.9575289575289575, 'f1': 0.9715964740450539, 'number': 518} | {'precision': 0.9298245614035088, 'recall': 1.0, 'f1': 0.9636363636363636, 'number': 53} | {'precision': 0.9847328244274809, 'recall': 1.0, 'f1': 0.9923076923076923, 'number': 129} | 0.9748 | 0.9801 | 0.9775 | 0.9941 |
|
75 |
+
| 0.0057 | 11.0 | 209 | 0.0342 | {'precision': 0.9669491525423729, 'recall': 0.971063829787234, 'f1': 0.9690021231422504, 'number': 1175} | {'precision': 0.9795918367346939, 'recall': 0.9739130434782609, 'f1': 0.9767441860465117, 'number': 345} | {'precision': 1.0, 'recall': 0.9689922480620154, 'f1': 0.9842519685039369, 'number': 129} | {'precision': 0.9702970297029703, 'recall': 0.9607843137254902, 'f1': 0.9655172413793103, 'number': 102} | {'precision': 0.9672131147540983, 'recall': 0.9752066115702479, 'f1': 0.9711934156378601, 'number': 121} | {'precision': 0.9770992366412213, 'recall': 0.9922480620155039, 'f1': 0.9846153846153846, 'number': 129} | {'precision': 0.978021978021978, 'recall': 0.9941489361702127, 'f1': 0.9860195199155896, 'number': 1880} | {'precision': 0.9860834990059643, 'recall': 0.9575289575289575, 'f1': 0.9715964740450539, 'number': 518} | {'precision': 0.9298245614035088, 'recall': 1.0, 'f1': 0.9636363636363636, 'number': 53} | {'precision': 0.9923076923076923, 'recall': 1.0, 'f1': 0.9961389961389961, 'number': 129} | 0.9761 | 0.9808 | 0.9784 | 0.9944 |
|
76 |
+
| 0.0051 | 12.0 | 228 | 0.0352 | {'precision': 0.964527027027027, 'recall': 0.9719148936170213, 'f1': 0.9682068673166595, 'number': 1175} | {'precision': 0.9739130434782609, 'recall': 0.9739130434782609, 'f1': 0.9739130434782609, 'number': 345} | {'precision': 1.0, 'recall': 0.9689922480620154, 'f1': 0.9842519685039369, 'number': 129} | {'precision': 0.9702970297029703, 'recall': 0.9607843137254902, 'f1': 0.9655172413793103, 'number': 102} | {'precision': 0.9672131147540983, 'recall': 0.9752066115702479, 'f1': 0.9711934156378601, 'number': 121} | {'precision': 0.9770992366412213, 'recall': 0.9922480620155039, 'f1': 0.9846153846153846, 'number': 129} | {'precision': 0.9785340314136126, 'recall': 0.9941489361702127, 'f1': 0.9862796833773088, 'number': 1880} | {'precision': 0.9860834990059643, 'recall': 0.9575289575289575, 'f1': 0.9715964740450539, 'number': 518} | {'precision': 0.9137931034482759, 'recall': 1.0, 'f1': 0.9549549549549551, 'number': 53} | {'precision': 0.9847328244274809, 'recall': 1.0, 'f1': 0.9923076923076923, 'number': 129} | 0.9748 | 0.9810 | 0.9779 | 0.9943 |
|
77 |
+
| 0.0051 | 13.0 | 247 | 0.0352 | {'precision': 0.9638047138047138, 'recall': 0.9744680851063829, 'f1': 0.9691070672873465, 'number': 1175} | {'precision': 0.9795918367346939, 'recall': 0.9739130434782609, 'f1': 0.9767441860465117, 'number': 345} | {'precision': 1.0, 'recall': 0.9689922480620154, 'f1': 0.9842519685039369, 'number': 129} | {'precision': 0.9702970297029703, 'recall': 0.9607843137254902, 'f1': 0.9655172413793103, 'number': 102} | {'precision': 0.9291338582677166, 'recall': 0.9752066115702479, 'f1': 0.9516129032258065, 'number': 121} | {'precision': 0.9624060150375939, 'recall': 0.9922480620155039, 'f1': 0.9770992366412213, 'number': 129} | {'precision': 0.9790356394129979, 'recall': 0.9936170212765958, 'f1': 0.9862724392819429, 'number': 1880} | {'precision': 0.9860834990059643, 'recall': 0.9575289575289575, 'f1': 0.9715964740450539, 'number': 518} | {'precision': 0.9298245614035088, 'recall': 1.0, 'f1': 0.9636363636363636, 'number': 53} | {'precision': 0.9847328244274809, 'recall': 1.0, 'f1': 0.9923076923076923, 'number': 129} | 0.9740 | 0.9814 | 0.9777 | 0.9942 |
|
78 |
+
| 0.0046 | 14.0 | 266 | 0.0356 | {'precision': 0.9605373635600336, 'recall': 0.9736170212765958, 'f1': 0.967032967032967, 'number': 1175} | {'precision': 0.9795918367346939, 'recall': 0.9739130434782609, 'f1': 0.9767441860465117, 'number': 345} | {'precision': 1.0, 'recall': 0.9689922480620154, 'f1': 0.9842519685039369, 'number': 129} | {'precision': 0.9702970297029703, 'recall': 0.9607843137254902, 'f1': 0.9655172413793103, 'number': 102} | {'precision': 0.959349593495935, 'recall': 0.9752066115702479, 'f1': 0.9672131147540983, 'number': 121} | {'precision': 0.9624060150375939, 'recall': 0.9922480620155039, 'f1': 0.9770992366412213, 'number': 129} | {'precision': 0.9790246460409019, 'recall': 0.9930851063829788, 'f1': 0.9860047531027197, 'number': 1880} | {'precision': 0.9860834990059643, 'recall': 0.9575289575289575, 'f1': 0.9715964740450539, 'number': 518} | {'precision': 0.9137931034482759, 'recall': 1.0, 'f1': 0.9549549549549551, 'number': 53} | {'precision': 0.9847328244274809, 'recall': 1.0, 'f1': 0.9923076923076923, 'number': 129} | 0.9738 | 0.9810 | 0.9774 | 0.9941 |
|
79 |
+
| 0.0044 | 15.0 | 285 | 0.0355 | {'precision': 0.9613445378151261, 'recall': 0.9736170212765958, 'f1': 0.9674418604651164, 'number': 1175} | {'precision': 0.9795918367346939, 'recall': 0.9739130434782609, 'f1': 0.9767441860465117, 'number': 345} | {'precision': 1.0, 'recall': 0.9689922480620154, 'f1': 0.9842519685039369, 'number': 129} | {'precision': 0.9702970297029703, 'recall': 0.9607843137254902, 'f1': 0.9655172413793103, 'number': 102} | {'precision': 0.959349593495935, 'recall': 0.9752066115702479, 'f1': 0.9672131147540983, 'number': 121} | {'precision': 0.9624060150375939, 'recall': 0.9922480620155039, 'f1': 0.9770992366412213, 'number': 129} | {'precision': 0.9790246460409019, 'recall': 0.9930851063829788, 'f1': 0.9860047531027197, 'number': 1880} | {'precision': 0.9860834990059643, 'recall': 0.9575289575289575, 'f1': 0.9715964740450539, 'number': 518} | {'precision': 0.9137931034482759, 'recall': 1.0, 'f1': 0.9549549549549551, 'number': 53} | {'precision': 0.9923076923076923, 'recall': 1.0, 'f1': 0.9961389961389961, 'number': 129} | 0.9742 | 0.9810 | 0.9776 | 0.9942 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.44.2
|
85 |
+
- Pytorch 2.4.1+cu121
|
86 |
+
- Datasets 3.0.0
|
87 |
+
- Tokenizers 0.19.1
|
config.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "riteshbehera857/layoutlm-base-uncased-finetuned-invoices-1",
|
3 |
+
"architectures": [
|
4 |
+
"LayoutLMForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"id2label": {
|
11 |
+
"0": "O",
|
12 |
+
"1": "Invoice no",
|
13 |
+
"2": "Order id",
|
14 |
+
"3": "Order date",
|
15 |
+
"4": "GST no",
|
16 |
+
"5": "Total net",
|
17 |
+
"6": "Total gross",
|
18 |
+
"7": "S-name",
|
19 |
+
"8": "B-name",
|
20 |
+
"9": "S-adress",
|
21 |
+
"10": "B-adress"
|
22 |
+
},
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"intermediate_size": 3072,
|
25 |
+
"label2id": {
|
26 |
+
"B-adress": 10,
|
27 |
+
"B-name": 8,
|
28 |
+
"GST no": 4,
|
29 |
+
"Invoice no": 1,
|
30 |
+
"O": 0,
|
31 |
+
"Order date": 3,
|
32 |
+
"Order id": 2,
|
33 |
+
"S-adress": 9,
|
34 |
+
"S-name": 7,
|
35 |
+
"Total gross": 6,
|
36 |
+
"Total net": 5
|
37 |
+
},
|
38 |
+
"layer_norm_eps": 1e-12,
|
39 |
+
"max_2d_position_embeddings": 1024,
|
40 |
+
"max_position_embeddings": 512,
|
41 |
+
"model_type": "layoutlm",
|
42 |
+
"num_attention_heads": 12,
|
43 |
+
"num_hidden_layers": 12,
|
44 |
+
"output_past": true,
|
45 |
+
"pad_token_id": 0,
|
46 |
+
"position_embedding_type": "absolute",
|
47 |
+
"torch_dtype": "float32",
|
48 |
+
"transformers_version": "4.44.2",
|
49 |
+
"type_vocab_size": 2,
|
50 |
+
"use_cache": true,
|
51 |
+
"vocab_size": 30522
|
52 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6103613111ddd3bbb8b736aadd2fa860ddee045806f7592352e9ca4cf2ed07d
|
3 |
+
size 450570516
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"max_len": 512,
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "[PAD]",
|
51 |
+
"sep_token": "[SEP]",
|
52 |
+
"strip_accents": null,
|
53 |
+
"tokenize_chinese_chars": true,
|
54 |
+
"tokenizer_class": "LayoutLMTokenizer",
|
55 |
+
"unk_token": "[UNK]"
|
56 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c9c4a2b145445e7c7083dd9d6a2585893db9fb6ff1959c27746e082e3580f47
|
3 |
+
size 5176
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|