--- library_name: peft license: apache-2.0 base_model: meta-llama/Llama-2-7b-hf datasets: - cfilt/iitb-english-hindi language: - en - hi metrics: - bleu --- # Finetuning This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the IITB English to Hindi dataset. source group: English target group: Hindi ## Model description meta-llama/Llama-2-7b-hf finetuned for translation task in Hindi language ## Training and evaluation data cfilt/iitb-english-hindi ### Training hyperparameters The following hyperparameters were used during training: - num_train_epochs=1 - per_device_train_batch_size=4 - per_device_eval_batch_size = 4 - gradient_accumulation_steps=1 - optim="paged_adamw_32bit" - learning_rate=2e-4 - weight_decay=0.001 - fp16=True - max_grad_norm=0.3 - max_steps=-1 - warmup_ratio=0.03 - group_by_length=True - lr_scheduler_type="constant" ### Benchamark Evaluation - BLEU score on Tatoeba: 12.605968092174914 - BLUE score on IN-22: 25.893729634826876 ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1