Update README.md
Browse files
README.md
CHANGED
@@ -59,25 +59,3 @@ result = classifier(text)
|
|
59 |
# Output the result
|
60 |
print(result)
|
61 |
# Example Output: [{'label': 'LABEL_2', 'score': 0.9976001381874084}]
|
62 |
-
|
63 |
-
#### OR
|
64 |
-
|
65 |
-
from transformers import GPT2Tokenizer, GPT2ForSequenceClassification
|
66 |
-
import torch
|
67 |
-
|
68 |
-
# Load the model and tokenizer
|
69 |
-
tokenizer = GPT2Tokenizer.from_pretrained("riturajpandey739/gpt2-sentiment-analysis-tweets")
|
70 |
-
model = GPT2ForSequenceClassification.from_pretrained("riturajpandey739/gpt2-sentiment-analysis-tweets")
|
71 |
-
|
72 |
-
# Tokenize the input text
|
73 |
-
input_text = "This is a fantastic product! I highly recommend it."
|
74 |
-
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
|
75 |
-
|
76 |
-
# Get model predictions
|
77 |
-
with torch.no_grad():
|
78 |
-
logits = model(**inputs).logits
|
79 |
-
|
80 |
-
# Get the predicted class (0, 1, 2 for Negative, Neutral, Positive)
|
81 |
-
predicted_class = torch.argmax(logits, dim=-1).item()
|
82 |
-
|
83 |
-
print(f"Predicted Label: {predicted_class}")
|
|
|
59 |
# Output the result
|
60 |
print(result)
|
61 |
# Example Output: [{'label': 'LABEL_2', 'score': 0.9976001381874084}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|