File size: 2,846 Bytes
45a5ea5 9697da4 45a5ea5 915eb26 45a5ea5 915eb26 45a5ea5 9697da4 45a5ea5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
library_name: transformers
base_model: RobertZ2011/resnet-18-birb
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: klasifikasiburung
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# klasifikasiburung
This model is a fine-tuned version of [RobertZ2011/resnet-18-birb](https://huggingface.co/RobertZ2011/resnet-18-birb) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0186
- Accuracy: 0.7565
- Precision: 0.7631
- Recall: 0.7565
- F1: 0.7554
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.5955 | 1.0 | 188 | 1.4442 | 0.7235 | 0.7426 | 0.7235 | 0.7169 |
| 1.1224 | 2.0 | 376 | 1.2881 | 0.7458 | 0.7546 | 0.7458 | 0.7406 |
| 0.7778 | 3.0 | 564 | 1.1965 | 0.7501 | 0.7635 | 0.7501 | 0.7483 |
| 0.5573 | 4.0 | 752 | 1.1417 | 0.7565 | 0.7635 | 0.7565 | 0.7538 |
| 0.4231 | 5.0 | 940 | 1.1077 | 0.7584 | 0.7671 | 0.7584 | 0.7567 |
| 0.2878 | 6.0 | 1128 | 1.0893 | 0.7601 | 0.7716 | 0.7601 | 0.7597 |
| 0.2043 | 7.0 | 1316 | 1.0688 | 0.7591 | 0.7661 | 0.7591 | 0.7579 |
| 0.1326 | 8.0 | 1504 | 1.0687 | 0.7582 | 0.7653 | 0.7582 | 0.7565 |
| 0.0851 | 9.0 | 1692 | 1.0502 | 0.7598 | 0.7652 | 0.7598 | 0.7581 |
| 0.0807 | 10.0 | 1880 | 1.0318 | 0.7582 | 0.7644 | 0.7582 | 0.7569 |
| 0.0581 | 11.0 | 2068 | 1.0403 | 0.7572 | 0.7629 | 0.7572 | 0.7558 |
| 0.043 | 12.0 | 2256 | 1.0295 | 0.7565 | 0.7633 | 0.7565 | 0.7557 |
| 0.0379 | 13.0 | 2444 | 1.0271 | 0.7568 | 0.7636 | 0.7568 | 0.7557 |
| 0.0399 | 14.0 | 2632 | 1.0319 | 0.7558 | 0.7627 | 0.7558 | 0.7549 |
| 0.0447 | 15.0 | 2820 | 1.0186 | 0.7565 | 0.7631 | 0.7565 | 0.7554 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
|