--- library_name: transformers base_model: RobertZ2011/resnet-18-birb tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: klasifikasiburung results: [] --- # klasifikasiburung This model is a fine-tuned version of [RobertZ2011/resnet-18-birb](https://huggingface.co/RobertZ2011/resnet-18-birb) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0186 - Accuracy: 0.7565 - Precision: 0.7631 - Recall: 0.7565 - F1: 0.7554 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.5955 | 1.0 | 188 | 1.4442 | 0.7235 | 0.7426 | 0.7235 | 0.7169 | | 1.1224 | 2.0 | 376 | 1.2881 | 0.7458 | 0.7546 | 0.7458 | 0.7406 | | 0.7778 | 3.0 | 564 | 1.1965 | 0.7501 | 0.7635 | 0.7501 | 0.7483 | | 0.5573 | 4.0 | 752 | 1.1417 | 0.7565 | 0.7635 | 0.7565 | 0.7538 | | 0.4231 | 5.0 | 940 | 1.1077 | 0.7584 | 0.7671 | 0.7584 | 0.7567 | | 0.2878 | 6.0 | 1128 | 1.0893 | 0.7601 | 0.7716 | 0.7601 | 0.7597 | | 0.2043 | 7.0 | 1316 | 1.0688 | 0.7591 | 0.7661 | 0.7591 | 0.7579 | | 0.1326 | 8.0 | 1504 | 1.0687 | 0.7582 | 0.7653 | 0.7582 | 0.7565 | | 0.0851 | 9.0 | 1692 | 1.0502 | 0.7598 | 0.7652 | 0.7598 | 0.7581 | | 0.0807 | 10.0 | 1880 | 1.0318 | 0.7582 | 0.7644 | 0.7582 | 0.7569 | | 0.0581 | 11.0 | 2068 | 1.0403 | 0.7572 | 0.7629 | 0.7572 | 0.7558 | | 0.043 | 12.0 | 2256 | 1.0295 | 0.7565 | 0.7633 | 0.7565 | 0.7557 | | 0.0379 | 13.0 | 2444 | 1.0271 | 0.7568 | 0.7636 | 0.7568 | 0.7557 | | 0.0399 | 14.0 | 2632 | 1.0319 | 0.7558 | 0.7627 | 0.7558 | 0.7549 | | 0.0447 | 15.0 | 2820 | 1.0186 | 0.7565 | 0.7631 | 0.7565 | 0.7554 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1