--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bpmn-task-extractor results: [] --- # bpmn-task-extractor This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0970 - Precision: 0.95 - Recall: 0.95 - F1: 0.9500 - Accuracy: 0.9888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 1 | 1.0813 | 0.3077 | 0.2 | 0.2424 | 0.6404 | | No log | 2.0 | 2 | 0.7296 | 0.4783 | 0.55 | 0.5116 | 0.7191 | | No log | 3.0 | 3 | 0.5097 | 0.6111 | 0.55 | 0.5789 | 0.8090 | | No log | 4.0 | 4 | 0.3683 | 0.7059 | 0.6 | 0.6486 | 0.8652 | | No log | 5.0 | 5 | 0.2926 | 0.75 | 0.6 | 0.6667 | 0.8539 | | No log | 6.0 | 6 | 0.2268 | 0.7647 | 0.65 | 0.7027 | 0.8764 | | No log | 7.0 | 7 | 0.1699 | 0.7778 | 0.7 | 0.7368 | 0.9101 | | No log | 8.0 | 8 | 0.1273 | 0.8 | 0.8 | 0.8000 | 0.9438 | | No log | 9.0 | 9 | 0.1061 | 0.95 | 0.95 | 0.9500 | 0.9888 | | No log | 10.0 | 10 | 0.0970 | 0.95 | 0.95 | 0.9500 | 0.9888 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1