mlmodel2 / house_price_prediction.py
rmaitest's picture
Upload house_price_prediction.py with huggingface_hub
22ce241 verified
raw
history blame
546 Bytes
import joblib
import pandas as pd
def predict_price(size, bedrooms, age):
"""Predicts house price based on input features."""
# Load the model
model = joblib.load("house_price_model.pkl")
# Create a DataFrame from user input
input_data = pd.DataFrame({
'Size (sq ft)': [size],
'Number of Bedrooms': [bedrooms],
'Age of House (years)': [age]
})
# Predict the price using the trained model
predicted_price = model.predict(input_data)[0]
# Return the prediction
return {"predicted_price": predicted_price}