File size: 5,424 Bytes
b699f20 42bb767 b699f20 3bbd01f 83e6933 b699f20 42bb767 b699f20 46a5b9c ebca91a 41d9a21 7805b61 552ccad b699f20 3d7b5ce 12a1eb3 304946b ebca91a 170b019 ebca91a 170b019 9a81d41 170b019 42bb767 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- merge
- mergekit
- lazymergekit
- mistral
- roleplay
- ResplendentAI/Datura_7B
- Epiculous/Mika-7B
base_model:
- ResplendentAI/Datura_7B
- Epiculous/Mika-7B
model-index:
- name: Foxglove_7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 67.83
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aridoverrun/Foxglove_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.57
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aridoverrun/Foxglove_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.89
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aridoverrun/Foxglove_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 69.64
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aridoverrun/Foxglove_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.74
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aridoverrun/Foxglove_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 44.96
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aridoverrun/Foxglove_7B
name: Open LLM Leaderboard
---
<img src="https://cdn-uploads.huggingface.co/production/uploads/65ad2502043d53781aad2ee4/FUH__CjalqBRPiSaqZfO6.png" alt="image" width="540" height="540" style="margin-bottom: 30px;">
# 🌸 Foxglove_7B
Foxglove is a well-rounded RP model. It is smart, does a great job of sticking to character card, and is proficient at following desired markdown.
Foxglove_7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [ResplendentAI/Datura_7B](https://huggingface.co/ResplendentAI/Datura_7B)
* [Epiculous/Mika-7B](https://huggingface.co/Epiculous/Mika-7B)
## Quantizations
Thanks to mradermacher, static GGUF quants are available [here](https://huggingface.co/mradermacher/Foxglove_7B-GGUF).
## Formatting/Preset
Alpaca works best, but Mistral provides good outputs as well.
## Configuration
```yaml
slices:
- sources:
- model: ResplendentAI/Datura_7B
layer_range: [0, 32]
- model: Epiculous/Mika-7B
layer_range: [0, 32]
merge_method: slerp
base_model: ResplendentAI/Datura_7B
parameters:
t:
- filter: self_attn
value: [0, 0.7, 0.4, 0.6, 1]
- filter: mlp
value: [0.8, 0.5, 0.7, 0.3, 0]
- value: 0.6
dtype: bfloat16
```
## Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "rmdhirr/Foxglove_7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_aridoverrun__Foxglove_7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |68.77|
|AI2 Reasoning Challenge (25-Shot)|67.83|
|HellaSwag (10-Shot) |86.57|
|MMLU (5-Shot) |62.89|
|TruthfulQA (0-shot) |69.64|
|Winogrande (5-shot) |80.74|
|GSM8k (5-shot) |44.96|
|