## Model Performance ### Classification Report | Class | Precision | Recall | F1-Score | Support | |-----------|-----------|--------|----------|---------| | Negative | 0.90 | 0.89 | 0.90 | 14692 | | Neutral | 0.90 | 0.88 | 0.89 | 16970 | | Positive | 0.89 | 0.92 | 0.90 | 16861 | - **Accuracy**: 90% - **Macro Avg Precision**: 0.90 - **Macro Avg Recall**: 0.90 - **Macro Avg F1-Score**: 0.90 ### Summary This model achieves a balanced performance across all sentiment classes, with high precision and recall, especially in the positive and negative classes. --- tags: - text-classification - sentiment-analysis pipeline_tag: text-classification --- # Model Name ft-Malay-bert ## Model Description This model is a fine-tuned version of [BERT](https://huggingface.co/bert-base-uncased) for the Malay language. It has been trained on [describe your dataset] to perform [specific task, e.g., sentiment analysis, classification, etc.]. ## Intended Uses & Limitations This model is intended for [describe intended uses]. It should be noted that [mention any limitations or biases]. ## How to Use ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("rmtariq/ft-Malay-bert") tokenizer = AutoTokenizer.from_pretrained("rmtariq/ft-Malay-bert") inputs = tokenizer("Your text here", return_tensors="pt") outputs = model(**inputs)