rstl commited on
Commit
649c49b
·
1 Parent(s): bc58a15

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -7.42 +/- 2.01
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7815e45281d141a05e3a2af04b325dcf8aea88019a00e7b376f93815cfcc6b54
3
+ size 107737
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0fd4f4b8b0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f0fd4f49b80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1679856140403069600,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtcaGPuesbz6+/1k+tcaGPuesbz6+/1k+tcaGPuesbz6+/1k+tcaGPuesbz6+/1k+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZfMKv5dXyr+4/iC/M4n4vjMLlr/0jZK/hL27P+ertj7WK8q/8EiKP1Imhr60EqI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC1xoY+56xvPr7/WT7oO3U9w5ihPA7BqDy1xoY+56xvPr7/WT7oO3U9w5ihPA7BqDy1xoY+56xvPr7/WT7oO3U9w5ihPA7BqDy1xoY+56xvPr7/WT7oO3U9w5ihPA7BqDyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.26323476 0.23405801 0.21288964]\n [0.26323476 0.23405801 0.21288964]\n [0.26323476 0.23405801 0.21288964]\n [0.26323476 0.23405801 0.21288964]]",
60
+ "desired_goal": "[[-0.5427764 -1.580798 -0.6288867 ]\n [-0.48542175 -1.1722168 -1.1449571 ]\n [ 1.466721 0.35678026 -1.5794628 ]\n [ 1.0803509 -0.2620111 1.2661958 ]]",
61
+ "observation": "[[0.26323476 0.23405801 0.21288964 0.05987158 0.01972616 0.02059987]\n [0.26323476 0.23405801 0.21288964 0.05987158 0.01972616 0.02059987]\n [0.26323476 0.23405801 0.21288964 0.05987158 0.01972616 0.02059987]\n [0.26323476 0.23405801 0.21288964 0.05987158 0.01972616 0.02059987]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcGJSvWEc/z3CRco8B8ncO4ybXj3hAmg9zA+VvMY8hz3eN6g9/1kuO5tb/zwNTxc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.05136341 0.12456585 0.02469147]\n [ 0.00673783 0.05434756 0.05664337]\n [-0.01819601 0.06603388 0.08213781]\n [ 0.00266039 0.03117161 0.14776249]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgv+tZMfmHsCUhpRSlIwBbJRLMowBdJRHQK/xcydnTRZ1fZQoaAZoCWgPQwipiNNJtpoVwJSGlFKUaBVLMmgWR0Cv8KnzYmLMdX2UKGgGaAloD0MIuECC4sfYHsCUhpRSlGgVSzJoFkdAr+/UiKR+0HV9lChoBmgJaA9DCD1FDhE3vyHAlIaUUpRoFUsyaBZHQK/uGsiB5HF1fZQoaAZoCWgPQwghHomXpwMhwJSGlFKUaBVLMmgWR0Cv8o2+fywwdX2UKGgGaAloD0MIeXWOAdmLIMCUhpRSlGgVSzJoFkdAr/HEjFAE+3V9lChoBmgJaA9DCKeU10rorhzAlIaUUpRoFUsyaBZHQK/w71RtP551fZQoaAZoCWgPQwgEN1K2SHocwJSGlFKUaBVLMmgWR0Cv7zV01ZTydX2UKGgGaAloD0MIcsCuJk9JGsCUhpRSlGgVSzJoFkdAr/OzOkcjq3V9lChoBmgJaA9DCNTTR+APzx3AlIaUUpRoFUsyaBZHQK/y6hGH58B1fZQoaAZoCWgPQwj/klSmmFMhwJSGlFKUaBVLMmgWR0Cv8hS+6Ae8dX2UKGgGaAloD0MIJ2a9GMrBIcCUhpRSlGgVSzJoFkdAr/BbqIJqqXV9lChoBmgJaA9DCKIKf4Y36xLAlIaUUpRoFUsyaBZHQK/086mwaBJ1fZQoaAZoCWgPQwhStkjajf4mwJSGlFKUaBVLMmgWR0Cv9CqBun/DdX2UKGgGaAloD0MI9DP1ukXYIsCUhpRSlGgVSzJoFkdAr/NVFfAsTXV9lChoBmgJaA9DCNGvrZ/+gyPAlIaUUpRoFUsyaBZHQK/xmzWwu/V1fZQoaAZoCWgPQwgPgLirV9ElwJSGlFKUaBVLMmgWR0Cv9jWOIZZTdX2UKGgGaAloD0MIwD46deXzI8CUhpRSlGgVSzJoFkdAr/VsaGYa53V9lChoBmgJaA9DCFH1K50P1yDAlIaUUpRoFUsyaBZHQK/0ly4nWrh1fZQoaAZoCWgPQwggC9EhcGQXwJSGlFKUaBVLMmgWR0Cv8t4Lb5/LdX2UKGgGaAloD0MImdU73A5tFMCUhpRSlGgVSzJoFkdAr/dvDR+jM3V9lChoBmgJaA9DCELqdvaVHybAlIaUUpRoFUsyaBZHQK/2peTFERd1fZQoaAZoCWgPQwhLsDic+TUfwJSGlFKUaBVLMmgWR0Cv9dBuXNTtdX2UKGgGaAloD0MIQNmUK7yrH8CUhpRSlGgVSzJoFkdAr/QWfChvi3V9lChoBmgJaA9DCJPgDWlUMBjAlIaUUpRoFUsyaBZHQK/4wdc0Ltx1fZQoaAZoCWgPQwgTtTS3QngXwJSGlFKUaBVLMmgWR0Cv9/lAmiQDdX2UKGgGaAloD0MIi2t8JvtvKsCUhpRSlGgVSzJoFkdAr/cj7EYO2HV9lChoBmgJaA9DCGdl+5C3nB/AlIaUUpRoFUsyaBZHQK/1agpSaVl1fZQoaAZoCWgPQwi8AtGTMukbwJSGlFKUaBVLMmgWR0Cv+eeVcD8tdX2UKGgGaAloD0MIjJ3wEpzKF8CUhpRSlGgVSzJoFkdAr/keWrwOOXV9lChoBmgJaA9DCIaqmEo/aSDAlIaUUpRoFUsyaBZHQK/4SNLlFMJ1fZQoaAZoCWgPQwg6PITx0zgewJSGlFKUaBVLMmgWR0Cv9o9LpRoAdX2UKGgGaAloD0MIonxBCwlgIMCUhpRSlGgVSzJoFkdAr/shFPSDy3V9lChoBmgJaA9DCCeDo+TV6RjAlIaUUpRoFUsyaBZHQK/6WEaESM91fZQoaAZoCWgPQwiyutVz0jsawJSGlFKUaBVLMmgWR0Cv+YK6OHWSdX2UKGgGaAloD0MI73A7NCyOIcCUhpRSlGgVSzJoFkdAr/fI5q/M4nV9lChoBmgJaA9DCHUdqinJEiDAlIaUUpRoFUsyaBZHQK/8VwsGxD91fZQoaAZoCWgPQwiB0eXN4ZoWwJSGlFKUaBVLMmgWR0Cv+43OObRXdX2UKGgGaAloD0MITvIjfsV6GsCUhpRSlGgVSzJoFkdAr/q4Nwzch3V9lChoBmgJaA9DCJ/Nqs/VdhHAlIaUUpRoFUsyaBZHQK/4/sfJV811fZQoaAZoCWgPQwgzar5KPt4gwJSGlFKUaBVLMmgWR0Cv/Y7PY4ACdX2UKGgGaAloD0MIBW1y+KRTGcCUhpRSlGgVSzJoFkdAr/zFxOtW/HV9lChoBmgJaA9DCKXAApgyQBfAlIaUUpRoFUsyaBZHQK/78ETQE6l1fZQoaAZoCWgPQwj1geSdQ0kYwJSGlFKUaBVLMmgWR0Cv+jdVmz0IdX2UKGgGaAloD0MIGoaPiCkJIMCUhpRSlGgVSzJoFkdAr/6/DziCKHV9lChoBmgJaA9DCBy2LcpssCDAlIaUUpRoFUsyaBZHQK/99r8iwB51fZQoaAZoCWgPQwh/NJwyN2chwJSGlFKUaBVLMmgWR0Cv/SGQ8wHrdX2UKGgGaAloD0MIqHNFKSEQJ8CUhpRSlGgVSzJoFkdAr/tn7rLQonV9lChoBmgJaA9DCLND/MOWjh7AlIaUUpRoFUsyaBZHQK//+pH7P6d1fZQoaAZoCWgPQwhfe2ZJgFIlwJSGlFKUaBVLMmgWR0Cv/zHiNsFddX2UKGgGaAloD0MIK4pXWdskHMCUhpRSlGgVSzJoFkdAr/5cv0yxiXV9lChoBmgJaA9DCGfttgvNNSHAlIaUUpRoFUsyaBZHQK/8oyk9ECx1fZQoaAZoCWgPQwh95qxPOW4jwJSGlFKUaBVLMmgWR0CwAI6IJqqPdX2UKGgGaAloD0MI7rH0oQuyIsCUhpRSlGgVSzJoFkdAsAAp79hqkHV9lChoBmgJaA9DCNtQMc7fhBrAlIaUUpRoFUsyaBZHQK//fkiD/VB1fZQoaAZoCWgPQwi1GDxM+5YWwJSGlFKUaBVLMmgWR0Cv/cRnnMdMdX2UKGgGaAloD0MI9E9wsaKmGcCUhpRSlGgVSzJoFkdAsAEm/Ho5gnV9lChoBmgJaA9DCFmmXyLeqhrAlIaUUpRoFUsyaBZHQLAAwmjCYTl1fZQoaAZoCWgPQwhz2H3H8PAgwJSGlFKUaBVLMmgWR0CwAFelO45MdX2UKGgGaAloD0MIHEC/79/MH8CUhpRSlGgVSzJoFkdAr/71fXwsoXV9lChoBmgJaA9DCK8K1GLwQBvAlIaUUpRoFUsyaBZHQLAB/m78Nx51fZQoaAZoCWgPQwjl8bT8wHUewJSGlFKUaBVLMmgWR0CwAZo8dPtVdX2UKGgGaAloD0MIED0pkxpqF8CUhpRSlGgVSzJoFkdAsAEwLJCBw3V9lChoBmgJaA9DCEkPQ6uTwxzAlIaUUpRoFUsyaBZHQLAAU9BKL891fZQoaAZoCWgPQwj2C3bDtqUbwJSGlFKUaBVLMmgWR0CwAvR46fapdX2UKGgGaAloD0MIjPhOzHrRJcCUhpRSlGgVSzJoFkdAsAKQmCyyEHV9lChoBmgJaA9DCEUvo1huiRPAlIaUUpRoFUsyaBZHQLACJqNp/PR1fZQoaAZoCWgPQwiwVBfwMgMUwJSGlFKUaBVLMmgWR0CwAUoddVvNdX2UKGgGaAloD0MIJIEGmzo/FsCUhpRSlGgVSzJoFkdAsAPphTfixXV9lChoBmgJaA9DCKG8j6M5ciPAlIaUUpRoFUsyaBZHQLADhUWVNYd1fZQoaAZoCWgPQwhjQzf7A0UcwJSGlFKUaBVLMmgWR0CwAxr6Hj6vdX2UKGgGaAloD0MI+ie4WFEDGMCUhpRSlGgVSzJoFkdAsAI+Z0CA+nV9lChoBmgJaA9DCBwMdVjhNhzAlIaUUpRoFUsyaBZHQLAE2M9KVY91fZQoaAZoCWgPQwjecYqO5CInwJSGlFKUaBVLMmgWR0CwBHSnk1dgdX2UKGgGaAloD0MIWTSdnQxuGsCUhpRSlGgVSzJoFkdAsAQKSq2jPHV9lChoBmgJaA9DCKtefqfJPB/AlIaUUpRoFUsyaBZHQLADLdV/+bV1fZQoaAZoCWgPQwj6DRMNUjAawJSGlFKUaBVLMmgWR0CwBevMr3CbdX2UKGgGaAloD0MIWmjnNAuEHcCUhpRSlGgVSzJoFkdAsAWHpljEvXV9lChoBmgJaA9DCHmu78NBghzAlIaUUpRoFUsyaBZHQLAFHUjcEeR1fZQoaAZoCWgPQwjh7NYyGV4ewJSGlFKUaBVLMmgWR0CwBEF3pwCKdX2UKGgGaAloD0MIO1ESEmkrGcCUhpRSlGgVSzJoFkdAsAbdnDiwS3V9lChoBmgJaA9DCD4IAfkSyiDAlIaUUpRoFUsyaBZHQLAGeZqEeyR1fZQoaAZoCWgPQwiDhZM0f8wYwJSGlFKUaBVLMmgWR0CwBg9KNAC5dX2UKGgGaAloD0MImIdM+RCMKcCUhpRSlGgVSzJoFkdAsAUy3F1jiHV9lChoBmgJaA9DCLzLRXwn1iDAlIaUUpRoFUsyaBZHQLAHto7muDB1fZQoaAZoCWgPQwg9R+S7lFoZwJSGlFKUaBVLMmgWR0CwB1H3xnWbdX2UKGgGaAloD0MIRluVRPYRFMCUhpRSlGgVSzJoFkdAsAbnPRiPQ3V9lChoBmgJaA9DCLN78rBQQyHAlIaUUpRoFUsyaBZHQLAGCmOU+s51fZQoaAZoCWgPQwg+P4wQHv0bwJSGlFKUaBVLMmgWR0CwCFVTefqYdX2UKGgGaAloD0MIx4MtdvucFsCUhpRSlGgVSzJoFkdAsAfw8IRh+nV9lChoBmgJaA9DCDgu46YGihnAlIaUUpRoFUsyaBZHQLAHhoDPnjh1fZQoaAZoCWgPQwgzwtuDENggwJSGlFKUaBVLMmgWR0CwBqngHeJpdX2UKGgGaAloD0MIF7ZmKy/ZJcCUhpRSlGgVSzJoFkdAsAj9VLi++XV9lChoBmgJaA9DCKFI93MKMhPAlIaUUpRoFUsyaBZHQLAImL9deIF1fZQoaAZoCWgPQwjKw0Ktaf4gwJSGlFKUaBVLMmgWR0CwCC4eo1k2dX2UKGgGaAloD0MI647FNqn4EsCUhpRSlGgVSzJoFkdAsAdRtO2y9nV9lChoBmgJaA9DCH0h5Lz/LyrAlIaUUpRoFUsyaBZHQLAJkQyAQQN1fZQoaAZoCWgPQwhrRZvj3L4pwJSGlFKUaBVLMmgWR0CwCSxy4nWrdX2UKGgGaAloD0MIv5tu2SEWJMCUhpRSlGgVSzJoFkdAsAjCA2AG0XV9lChoBmgJaA9DCHwm++dpqCLAlIaUUpRoFUsyaBZHQLAH5S9du511ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ad14b3d82372b195d10b7d72c67146695158d1ae61fc2f2313bd90f94d1bfef
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ca0a8431ad934128af26dd85bd6f8bdf528d3acefe385a8f0ef223688532aec
3
+ size 45886
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0fd4f4b8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0fd4f49b80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679856140403069600, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtcaGPuesbz6+/1k+tcaGPuesbz6+/1k+tcaGPuesbz6+/1k+tcaGPuesbz6+/1k+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZfMKv5dXyr+4/iC/M4n4vjMLlr/0jZK/hL27P+ertj7WK8q/8EiKP1Imhr60EqI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC1xoY+56xvPr7/WT7oO3U9w5ihPA7BqDy1xoY+56xvPr7/WT7oO3U9w5ihPA7BqDy1xoY+56xvPr7/WT7oO3U9w5ihPA7BqDy1xoY+56xvPr7/WT7oO3U9w5ihPA7BqDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.26323476 0.23405801 0.21288964]\n [0.26323476 0.23405801 0.21288964]\n [0.26323476 0.23405801 0.21288964]\n [0.26323476 0.23405801 0.21288964]]", "desired_goal": "[[-0.5427764 -1.580798 -0.6288867 ]\n [-0.48542175 -1.1722168 -1.1449571 ]\n [ 1.466721 0.35678026 -1.5794628 ]\n [ 1.0803509 -0.2620111 1.2661958 ]]", "observation": "[[0.26323476 0.23405801 0.21288964 0.05987158 0.01972616 0.02059987]\n [0.26323476 0.23405801 0.21288964 0.05987158 0.01972616 0.02059987]\n [0.26323476 0.23405801 0.21288964 0.05987158 0.01972616 0.02059987]\n [0.26323476 0.23405801 0.21288964 0.05987158 0.01972616 0.02059987]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcGJSvWEc/z3CRco8B8ncO4ybXj3hAmg9zA+VvMY8hz3eN6g9/1kuO5tb/zwNTxc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05136341 0.12456585 0.02469147]\n [ 0.00673783 0.05434756 0.05664337]\n [-0.01819601 0.06603388 0.08213781]\n [ 0.00266039 0.03117161 0.14776249]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgv+tZMfmHsCUhpRSlIwBbJRLMowBdJRHQK/xcydnTRZ1fZQoaAZoCWgPQwipiNNJtpoVwJSGlFKUaBVLMmgWR0Cv8KnzYmLMdX2UKGgGaAloD0MIuECC4sfYHsCUhpRSlGgVSzJoFkdAr+/UiKR+0HV9lChoBmgJaA9DCD1FDhE3vyHAlIaUUpRoFUsyaBZHQK/uGsiB5HF1fZQoaAZoCWgPQwghHomXpwMhwJSGlFKUaBVLMmgWR0Cv8o2+fywwdX2UKGgGaAloD0MIeXWOAdmLIMCUhpRSlGgVSzJoFkdAr/HEjFAE+3V9lChoBmgJaA9DCKeU10rorhzAlIaUUpRoFUsyaBZHQK/w71RtP551fZQoaAZoCWgPQwgEN1K2SHocwJSGlFKUaBVLMmgWR0Cv7zV01ZTydX2UKGgGaAloD0MIcsCuJk9JGsCUhpRSlGgVSzJoFkdAr/OzOkcjq3V9lChoBmgJaA9DCNTTR+APzx3AlIaUUpRoFUsyaBZHQK/y6hGH58B1fZQoaAZoCWgPQwj/klSmmFMhwJSGlFKUaBVLMmgWR0Cv8hS+6Ae8dX2UKGgGaAloD0MIJ2a9GMrBIcCUhpRSlGgVSzJoFkdAr/BbqIJqqXV9lChoBmgJaA9DCKIKf4Y36xLAlIaUUpRoFUsyaBZHQK/086mwaBJ1fZQoaAZoCWgPQwhStkjajf4mwJSGlFKUaBVLMmgWR0Cv9CqBun/DdX2UKGgGaAloD0MI9DP1ukXYIsCUhpRSlGgVSzJoFkdAr/NVFfAsTXV9lChoBmgJaA9DCNGvrZ/+gyPAlIaUUpRoFUsyaBZHQK/xmzWwu/V1fZQoaAZoCWgPQwgPgLirV9ElwJSGlFKUaBVLMmgWR0Cv9jWOIZZTdX2UKGgGaAloD0MIwD46deXzI8CUhpRSlGgVSzJoFkdAr/VsaGYa53V9lChoBmgJaA9DCFH1K50P1yDAlIaUUpRoFUsyaBZHQK/0ly4nWrh1fZQoaAZoCWgPQwggC9EhcGQXwJSGlFKUaBVLMmgWR0Cv8t4Lb5/LdX2UKGgGaAloD0MImdU73A5tFMCUhpRSlGgVSzJoFkdAr/dvDR+jM3V9lChoBmgJaA9DCELqdvaVHybAlIaUUpRoFUsyaBZHQK/2peTFERd1fZQoaAZoCWgPQwhLsDic+TUfwJSGlFKUaBVLMmgWR0Cv9dBuXNTtdX2UKGgGaAloD0MIQNmUK7yrH8CUhpRSlGgVSzJoFkdAr/QWfChvi3V9lChoBmgJaA9DCJPgDWlUMBjAlIaUUpRoFUsyaBZHQK/4wdc0Ltx1fZQoaAZoCWgPQwgTtTS3QngXwJSGlFKUaBVLMmgWR0Cv9/lAmiQDdX2UKGgGaAloD0MIi2t8JvtvKsCUhpRSlGgVSzJoFkdAr/cj7EYO2HV9lChoBmgJaA9DCGdl+5C3nB/AlIaUUpRoFUsyaBZHQK/1agpSaVl1fZQoaAZoCWgPQwi8AtGTMukbwJSGlFKUaBVLMmgWR0Cv+eeVcD8tdX2UKGgGaAloD0MIjJ3wEpzKF8CUhpRSlGgVSzJoFkdAr/keWrwOOXV9lChoBmgJaA9DCIaqmEo/aSDAlIaUUpRoFUsyaBZHQK/4SNLlFMJ1fZQoaAZoCWgPQwg6PITx0zgewJSGlFKUaBVLMmgWR0Cv9o9LpRoAdX2UKGgGaAloD0MIonxBCwlgIMCUhpRSlGgVSzJoFkdAr/shFPSDy3V9lChoBmgJaA9DCCeDo+TV6RjAlIaUUpRoFUsyaBZHQK/6WEaESM91fZQoaAZoCWgPQwiyutVz0jsawJSGlFKUaBVLMmgWR0Cv+YK6OHWSdX2UKGgGaAloD0MI73A7NCyOIcCUhpRSlGgVSzJoFkdAr/fI5q/M4nV9lChoBmgJaA9DCHUdqinJEiDAlIaUUpRoFUsyaBZHQK/8VwsGxD91fZQoaAZoCWgPQwiB0eXN4ZoWwJSGlFKUaBVLMmgWR0Cv+43OObRXdX2UKGgGaAloD0MITvIjfsV6GsCUhpRSlGgVSzJoFkdAr/q4Nwzch3V9lChoBmgJaA9DCJ/Nqs/VdhHAlIaUUpRoFUsyaBZHQK/4/sfJV811fZQoaAZoCWgPQwgzar5KPt4gwJSGlFKUaBVLMmgWR0Cv/Y7PY4ACdX2UKGgGaAloD0MIBW1y+KRTGcCUhpRSlGgVSzJoFkdAr/zFxOtW/HV9lChoBmgJaA9DCKXAApgyQBfAlIaUUpRoFUsyaBZHQK/78ETQE6l1fZQoaAZoCWgPQwj1geSdQ0kYwJSGlFKUaBVLMmgWR0Cv+jdVmz0IdX2UKGgGaAloD0MIGoaPiCkJIMCUhpRSlGgVSzJoFkdAr/6/DziCKHV9lChoBmgJaA9DCBy2LcpssCDAlIaUUpRoFUsyaBZHQK/99r8iwB51fZQoaAZoCWgPQwh/NJwyN2chwJSGlFKUaBVLMmgWR0Cv/SGQ8wHrdX2UKGgGaAloD0MIqHNFKSEQJ8CUhpRSlGgVSzJoFkdAr/tn7rLQonV9lChoBmgJaA9DCLND/MOWjh7AlIaUUpRoFUsyaBZHQK//+pH7P6d1fZQoaAZoCWgPQwhfe2ZJgFIlwJSGlFKUaBVLMmgWR0Cv/zHiNsFddX2UKGgGaAloD0MIK4pXWdskHMCUhpRSlGgVSzJoFkdAr/5cv0yxiXV9lChoBmgJaA9DCGfttgvNNSHAlIaUUpRoFUsyaBZHQK/8oyk9ECx1fZQoaAZoCWgPQwh95qxPOW4jwJSGlFKUaBVLMmgWR0CwAI6IJqqPdX2UKGgGaAloD0MI7rH0oQuyIsCUhpRSlGgVSzJoFkdAsAAp79hqkHV9lChoBmgJaA9DCNtQMc7fhBrAlIaUUpRoFUsyaBZHQK//fkiD/VB1fZQoaAZoCWgPQwi1GDxM+5YWwJSGlFKUaBVLMmgWR0Cv/cRnnMdMdX2UKGgGaAloD0MI9E9wsaKmGcCUhpRSlGgVSzJoFkdAsAEm/Ho5gnV9lChoBmgJaA9DCFmmXyLeqhrAlIaUUpRoFUsyaBZHQLAAwmjCYTl1fZQoaAZoCWgPQwhz2H3H8PAgwJSGlFKUaBVLMmgWR0CwAFelO45MdX2UKGgGaAloD0MIHEC/79/MH8CUhpRSlGgVSzJoFkdAr/71fXwsoXV9lChoBmgJaA9DCK8K1GLwQBvAlIaUUpRoFUsyaBZHQLAB/m78Nx51fZQoaAZoCWgPQwjl8bT8wHUewJSGlFKUaBVLMmgWR0CwAZo8dPtVdX2UKGgGaAloD0MIED0pkxpqF8CUhpRSlGgVSzJoFkdAsAEwLJCBw3V9lChoBmgJaA9DCEkPQ6uTwxzAlIaUUpRoFUsyaBZHQLAAU9BKL891fZQoaAZoCWgPQwj2C3bDtqUbwJSGlFKUaBVLMmgWR0CwAvR46fapdX2UKGgGaAloD0MIjPhOzHrRJcCUhpRSlGgVSzJoFkdAsAKQmCyyEHV9lChoBmgJaA9DCEUvo1huiRPAlIaUUpRoFUsyaBZHQLACJqNp/PR1fZQoaAZoCWgPQwiwVBfwMgMUwJSGlFKUaBVLMmgWR0CwAUoddVvNdX2UKGgGaAloD0MIJIEGmzo/FsCUhpRSlGgVSzJoFkdAsAPphTfixXV9lChoBmgJaA9DCKG8j6M5ciPAlIaUUpRoFUsyaBZHQLADhUWVNYd1fZQoaAZoCWgPQwhjQzf7A0UcwJSGlFKUaBVLMmgWR0CwAxr6Hj6vdX2UKGgGaAloD0MI+ie4WFEDGMCUhpRSlGgVSzJoFkdAsAI+Z0CA+nV9lChoBmgJaA9DCBwMdVjhNhzAlIaUUpRoFUsyaBZHQLAE2M9KVY91fZQoaAZoCWgPQwjecYqO5CInwJSGlFKUaBVLMmgWR0CwBHSnk1dgdX2UKGgGaAloD0MIWTSdnQxuGsCUhpRSlGgVSzJoFkdAsAQKSq2jPHV9lChoBmgJaA9DCKtefqfJPB/AlIaUUpRoFUsyaBZHQLADLdV/+bV1fZQoaAZoCWgPQwj6DRMNUjAawJSGlFKUaBVLMmgWR0CwBevMr3CbdX2UKGgGaAloD0MIWmjnNAuEHcCUhpRSlGgVSzJoFkdAsAWHpljEvXV9lChoBmgJaA9DCHmu78NBghzAlIaUUpRoFUsyaBZHQLAFHUjcEeR1fZQoaAZoCWgPQwjh7NYyGV4ewJSGlFKUaBVLMmgWR0CwBEF3pwCKdX2UKGgGaAloD0MIO1ESEmkrGcCUhpRSlGgVSzJoFkdAsAbdnDiwS3V9lChoBmgJaA9DCD4IAfkSyiDAlIaUUpRoFUsyaBZHQLAGeZqEeyR1fZQoaAZoCWgPQwiDhZM0f8wYwJSGlFKUaBVLMmgWR0CwBg9KNAC5dX2UKGgGaAloD0MImIdM+RCMKcCUhpRSlGgVSzJoFkdAsAUy3F1jiHV9lChoBmgJaA9DCLzLRXwn1iDAlIaUUpRoFUsyaBZHQLAHto7muDB1fZQoaAZoCWgPQwg9R+S7lFoZwJSGlFKUaBVLMmgWR0CwB1H3xnWbdX2UKGgGaAloD0MIRluVRPYRFMCUhpRSlGgVSzJoFkdAsAbnPRiPQ3V9lChoBmgJaA9DCLN78rBQQyHAlIaUUpRoFUsyaBZHQLAGCmOU+s51fZQoaAZoCWgPQwg+P4wQHv0bwJSGlFKUaBVLMmgWR0CwCFVTefqYdX2UKGgGaAloD0MIx4MtdvucFsCUhpRSlGgVSzJoFkdAsAfw8IRh+nV9lChoBmgJaA9DCDgu46YGihnAlIaUUpRoFUsyaBZHQLAHhoDPnjh1fZQoaAZoCWgPQwgzwtuDENggwJSGlFKUaBVLMmgWR0CwBqngHeJpdX2UKGgGaAloD0MIF7ZmKy/ZJcCUhpRSlGgVSzJoFkdAsAj9VLi++XV9lChoBmgJaA9DCKFI93MKMhPAlIaUUpRoFUsyaBZHQLAImL9deIF1fZQoaAZoCWgPQwjKw0Ktaf4gwJSGlFKUaBVLMmgWR0CwCC4eo1k2dX2UKGgGaAloD0MI647FNqn4EsCUhpRSlGgVSzJoFkdAsAdRtO2y9nV9lChoBmgJaA9DCH0h5Lz/LyrAlIaUUpRoFUsyaBZHQLAJkQyAQQN1fZQoaAZoCWgPQwhrRZvj3L4pwJSGlFKUaBVLMmgWR0CwCSxy4nWrdX2UKGgGaAloD0MIv5tu2SEWJMCUhpRSlGgVSzJoFkdAsAjCA2AG0XV9lChoBmgJaA9DCHwm++dpqCLAlIaUUpRoFUsyaBZHQLAH5S9du511ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (883 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -7.415172695368528, "std_reward": 2.0133746872752054, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-26T19:50:48.745241"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fae4388afc82c598fe81c7a429f5761bfe782b2e2db454878931bfa572ae51c7
3
+ size 3056