--- license: apache-2.0 library_name: sklearn tags: - tabular-classification - baseline-trainer --- ## Baseline Model trained on model_tuning_mindalleeu83oz7r to apply classification on labels **Metrics of the best model:** accuracy 0.732672 recall_macro 0.630156 precision_macro 0.439732 f1_macro 0.455558 Name: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000), dtype: float64 **See model plot below:**
Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types=                 continuous  dirty_float  ...  free_string  useless
temperatures          False        False  ...        False    False
superconditions        True        False  ...        False    False
is_megas              False        False  ...        False    False
feature_0              True        False  ...        False    False
feature_1              True        False  ...        False    False
...                     ...          ...  ...          ...      ...
feature_763            True        False  ...        False    False
feature_764            True        False  ...        False    False
feature_765            True        False  ...        False    False
feature_766            True        False  ...        False    False
feature_767            True        False  ...        False    False[771 rows x 7 columns])),('logisticregression',LogisticRegression(C=0.1, class_weight='balanced',max_iter=1000))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
**Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain). **Logs of training** including the models tried in the process can be found in logs.txt