Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-aterrizaje-v2.zip +3 -0
- ppo-aterrizaje-v2/_stable_baselines3_version +1 -0
- ppo-aterrizaje-v2/data +94 -0
- ppo-aterrizaje-v2/policy.optimizer.pth +3 -0
- ppo-aterrizaje-v2/policy.pth +3 -0
- ppo-aterrizaje-v2/pytorch_variables.pth +3 -0
- ppo-aterrizaje-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 208.67 +/- 41.69
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff8db0f85f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff8db0f8680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff8db0f8710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff8db0f87a0>", "_build": "<function ActorCriticPolicy._build at 0x7ff8db0f8830>", "forward": "<function ActorCriticPolicy.forward at 0x7ff8db0f88c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff8db0f8950>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff8db0f89e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff8db0f8a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff8db0f8b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff8db0f8b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff8db0c0900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651681306.4587274, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqP972gPlI/y5RmPDea0r4YRJC9QyrLPQAAAAAAAAAAbW02PtJokjxRfay7LTcjuj1bHD6/+SS7AACAPwAAgD/QHFK+OF2mPOEGCjvKNUS5R90rvoU5UToAAIA/AACAP6AvDT7Dszg7qjxLvCOGQbod/9I8w7MsuwAAgD8AAIA/M6MKvrhO0TqYNoC74pBOOKcLlrw6UJg6AACAPwAAgD/mNzK9g98EPa4ejD2W1W++K/zZvW1V8D0AAAAAAAAAAIAHAD/LSRq+QoeZu6yvcDlNrJa9ljIOtgAAgD8AAIA/5lYjvWAruT6CDsE8JDFrvsp9mr3qDBg9AAAAAAAAAACt7zK+hYe7PBOHXrvUOkc8ybFBvqL1izwAAAAAAAAAADNxTDy45te50q/oOia5NDXjb0C7fjYIugAAgD8AAIA/M/u/u6GStD887Be/apgOvFCu3ju1pgk+AAAAAAAAAACm6Fw+wyeQPvFpBD636zO+PY5ivKNqCr0AAAAAAAAAAID6FD1Up5k/moPiPNVh6r7yCKU8TUCqvQAAAAAAAAAAmt7jvSkMTbqel3s6gQuNNngnBrtMi5C5AACAPwAAgD9N+X49rjWHunPp6Lq3g3S1IMPeuss1BToAAIA/AACAP2LSj77Sy6+7nBi3ugZkrrd6ePk8KptyOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAABAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI176AXrgUXECUhpRSlIwBbJRN6AOMAXSUR0CAybbZezD5dX2UKGgGaAloD0MIRZ25h4QXYkCUhpRSlGgVTegDaBZHQIDPhUDMeOp1fZQoaAZoCWgPQwhSt7OvPLJeQJSGlFKUaBVN6ANoFkdAgOROl41P33V9lChoBmgJaA9DCCr/Wl657iHAlIaUUpRoFUvqaBZHQIDpbKFIuoR1fZQoaAZoCWgPQwi7Q4oBksdjQJSGlFKUaBVNzQJoFkdAgOmb1Iy0r3V9lChoBmgJaA9DCP6ZQXxgFFpAlIaUUpRoFU3oA2gWR0CA7G7rcCYDdX2UKGgGaAloD0MIA1slWBw+JECUhpRSlGgVTQIBaBZHQIDylnscABF1fZQoaAZoCWgPQwihoBSt3M1jQJSGlFKUaBVN6ANoFkdAgPcWphnanXV9lChoBmgJaA9DCPilft5UoF9AlIaUUpRoFU3oA2gWR0CA+Md4FA3UdX2UKGgGaAloD0MIAUwZOKBiW0CUhpRSlGgVTegDaBZHQID4z6vaDf51fZQoaAZoCWgPQwisi9toABNbQJSGlFKUaBVN6ANoFkdAgPm03XI2fnV9lChoBmgJaA9DCMIzoUli2SZAlIaUUpRoFUvUaBZHQIECWWUr08N1fZQoaAZoCWgPQwgw2A3bFh5cQJSGlFKUaBVN6ANoFkdAgQcTHsC1Z3V9lChoBmgJaA9DCPA2b5yUEGNAlIaUUpRoFU3oA2gWR0CBCy2FWXC1dX2UKGgGaAloD0MIxeV4BaIRXkCUhpRSlGgVTegDaBZHQIEMUlqrR0F1fZQoaAZoCWgPQwgZ/tMNFOJFQJSGlFKUaBVN6ANoFkdAgTyiMPz4DnV9lChoBmgJaA9DCFYsflPYYWZAlIaUUpRoFU2dAWgWR0CBPXd1MdtEdX2UKGgGaAloD0MI2jnNAu32RMCUhpRSlGgVS+hoFkdAgUWlsxfv4XV9lChoBmgJaA9DCIDUJk7uTWNAlIaUUpRoFU3oA2gWR0CBTBmyPdVOdX2UKGgGaAloD0MIeEfGavP1Q0CUhpRSlGgVTegDaBZHQIFO4HzH0bt1fZQoaAZoCWgPQwhnmNpSB3kWwJSGlFKUaBVLumgWR0CBUdTH80k4dX2UKGgGaAloD0MIVRaFXRREWkCUhpRSlGgVTegDaBZHQIFWPIXCTEB1fZQoaAZoCWgPQwjc8/xpoz1aQJSGlFKUaBVN6ANoFkdAgX+SMUAT7HV9lChoBmgJaA9DCDi9i/djnmNAlIaUUpRoFU3oA2gWR0CBh2yon8badX2UKGgGaAloD0MINKDejJrAX0CUhpRSlGgVTegDaBZHQIGNvUBnzxx1fZQoaAZoCWgPQwiobcMoiDxhQJSGlFKUaBVN6ANoFkdAgZIayjYZmHV9lChoBmgJaA9DCOqwwi2fcmNAlIaUUpRoFU3oA2gWR0CBk83eenQ6dX2UKGgGaAloD0MIb0bNV0kRZECUhpRSlGgVTegDaBZHQIGT1SjxkNF1fZQoaAZoCWgPQwgk06HTcwtiQJSGlFKUaBVN6ANoFkdAgZTLR8c+7nV9lChoBmgJaA9DCPmgZ7PqtV1AlIaUUpRoFU3oA2gWR0CBncRaouPFdX2UKGgGaAloD0MIr5P6srRbYkCUhpRSlGgVTegDaBZHQIGmcBQvYe11fZQoaAZoCWgPQwgjFFtB0+Y6QJSGlFKUaBVLtGgWR0CBpsJHiFTOdX2UKGgGaAloD0MIUtZvJqY0YUCUhpRSlGgVTegDaBZHQIGnjb5/LDB1fZQoaAZoCWgPQwjmkT8YeMxgQJSGlFKUaBVN6ANoFkdAgdhnVPN3XHV9lChoBmgJaA9DCD+MEB5tUV1AlIaUUpRoFU3oA2gWR0CB4N4L1EmZdX2UKGgGaAloD0MI83NDU/Z2YECUhpRSlGgVTegDaBZHQIHm2WfK6nR1fZQoaAZoCWgPQwhlcJS8OhVeQJSGlFKUaBVN6ANoFkdAgeluQ6p5vHV9lChoBmgJaA9DCPILryR56VpAlIaUUpRoFU3oA2gWR0CB7EOaOPvKdX2UKGgGaAloD0MIgpAsYAL8WECUhpRSlGgVTegDaBZHQIHwN/tpmEp1fZQoaAZoCWgPQwhHcY46Ojo6wJSGlFKUaBVL02gWR0CCB/xm03OwdX2UKGgGaAloD0MI4ue/B6+XakCUhpRSlGgVTVYCaBZHQIIPMx20Re11fZQoaAZoCWgPQwg8SiU8oR5cQJSGlFKUaBVN6ANoFkdAghhIgV45cXV9lChoBmgJaA9DCCAL0SFwS2JAlIaUUpRoFU3oA2gWR0CCH7eTmnwYdX2UKGgGaAloD0MIhpDz/j82PECUhpRSlGgVS8poFkdAgiJh9b5dnnV9lChoBmgJaA9DCLkzEwznQ1xAlIaUUpRoFU3oA2gWR0CCJZsdkrf+dX2UKGgGaAloD0MI6WD9n8NcCECUhpRSlGgVS7NoFkdAgiY5AQg9vHV9lChoBmgJaA9DCNL/ci1aUmNAlIaUUpRoFU3oA2gWR0CCKXXfZVXFdX2UKGgGaAloD0MI16VG6OdYYkCUhpRSlGgVTegDaBZHQIIq7EHdGiJ1fZQoaAZoCWgPQwj/Wl653nZgQJSGlFKUaBVN6ANoFkdAgivYgRsdk3V9lChoBmgJaA9DCGHij6LOfGFAlIaUUpRoFU3oA2gWR0CCNDVBlcyFdX2UKGgGaAloD0MIXiuhuyTuR0CUhpRSlGgVS61oFkdAgjSJ3os7MnV9lChoBmgJaA9DCLrcYKjDFlhAlIaUUpRoFU3oA2gWR0CCPIa1kUbldX2UKGgGaAloD0MI1HyVfOwcUECUhpRSlGgVS8RoFkdAgj0LVWjoIXV9lChoBmgJaA9DCHUdqilJSWJAlIaUUpRoFU3oA2gWR0CCPaLXtjTbdX2UKGgGaAloD0MIhv90AwU+CkCUhpRSlGgVS+NoFkdAgkFk6Lfk3nV9lChoBmgJaA9DCN2yQ/zDsj3AlIaUUpRoFUvpaBZHQIJC4BcRlH11fZQoaAZoCWgPQwh3ai43GKRcQJSGlFKUaBVN6ANoFkdAgkg+1a4c3nV9lChoBmgJaA9DCCPZI9QMzmBAlIaUUpRoFU3oA2gWR0CCdUruIAOsdX2UKGgGaAloD0MI1BBV+DO8GkCUhpRSlGgVS+VoFkdAgnjpWFN+LHV9lChoBmgJaA9DCAHg2LPndlxAlIaUUpRoFU3oA2gWR0CCesVh1DBudX2UKGgGaAloD0MId6IkJNKJYECUhpRSlGgVTVICaBZHQIJ8cExIre91fZQoaAZoCWgPQwjHuyNjtWJdQJSGlFKUaBVN6ANoFkdAgn0lRYRuj3V9lChoBmgJaA9DCK+ytikes2dAlIaUUpRoFU1dAWgWR0CCfSYQ8OkMdX2UKGgGaAloD0MIJO6x9KElYUCUhpRSlGgVTegDaBZHQIJ/RLPD50t1fZQoaAZoCWgPQwiCyY0iaz0bwJSGlFKUaBVL7mgWR0CCkOtL+PzWdX2UKGgGaAloD0MIfsUaLnLHIUCUhpRSlGgVS+RoFkdAgpJr9uP3jHV9lChoBmgJaA9DCOWbbW5MCzdAlIaUUpRoFUu4aBZHQIKmdU4rBj51fZQoaAZoCWgPQwjNzMzMzEdgQJSGlFKUaBVN6ANoFkdAgq3tNBWxQnV9lChoBmgJaA9DCPzfERWqjVtAlIaUUpRoFU3oA2gWR0CCs7RmbsnidX2UKGgGaAloD0MIf2q8dJMFaECUhpRSlGgVTegDaBZHQIK0Sp3os7N1fZQoaAZoCWgPQwisG++OjH9eQJSGlFKUaBVN6ANoFkdAgsQzRYzSC3V9lChoBmgJaA9DCMfa39kepTRAlIaUUpRoFUvjaBZHQILOOm+Cbtt1fZQoaAZoCWgPQwi5GW7A51ZgQJSGlFKUaBVN6ANoFkdAgs6n4oJAuHV9lChoBmgJaA9DCP93RIXqmGBAlIaUUpRoFU3oA2gWR0CCz1SR8twrdX2UKGgGaAloD0MIFoVdFL2AYECUhpRSlGgVTegDaBZHQILTjOcDr7h1fZQoaAZoCWgPQwiRR3AjZedbQJSGlFKUaBVN6ANoFkdAgtUUVSGahHV9lChoBmgJaA9DCDP+fcaFS15AlIaUUpRoFU3oA2gWR0CC2n5fMOf/dX2UKGgGaAloD0MI8UdRZ+7hOkCUhpRSlGgVS9poFkdAgtw/rSmZVnV9lChoBmgJaA9DCGqme53UDV3AlIaUUpRoFU0IAmgWR0CDBzZjhDPXdX2UKGgGaAloD0MIxOxl22l3ZECUhpRSlGgVTegDaBZHQIMHtDneSB91fZQoaAZoCWgPQwh716AvvctGwJSGlFKUaBVLymgWR0CDCObutwJgdX2UKGgGaAloD0MIPpP98zRPXUCUhpRSlGgVTegDaBZHQIMK5r8BMi91fZQoaAZoCWgPQwhLr83GSlw0QJSGlFKUaBVL0mgWR0CDDaajN6gNdX2UKGgGaAloD0MI8DDtm/trDMCUhpRSlGgVS/poFkdAgw2+v6j323V9lChoBmgJaA9DCGhbzTrjTmNAlIaUUpRoFU3oA2gWR0CDDgPwuuifdX2UKGgGaAloD0MIXyaKkDqDYkCUhpRSlGgVTegDaBZHQIMOloL5RCR1fZQoaAZoCWgPQwh8e9egL8ZhQJSGlFKUaBVN6ANoFkdAgxCPVurIYHV9lChoBmgJaA9DCLq/ety3Ei1AlIaUUpRoFUvQaBZHQIMZLNwBHTZ1fZQoaAZoCWgPQwiIf9jSo/tPQJSGlFKUaBVL6WgWR0CDH0S00FbFdX2UKGgGaAloD0MIUKbR5OKpY0CUhpRSlGgVTegDaBZHQIMjT63y7PJ1fZQoaAZoCWgPQwg/rDdqhWkdQJSGlFKUaBVL9GgWR0CDJEjps41hdX2UKGgGaAloD0MIlialoNtlQUCUhpRSlGgVS6xoFkdAgzL9jG1hLHV9lChoBmgJaA9DCOhoVUu6z2RAlIaUUpRoFU3oA2gWR0CDP0VX3g1ndX2UKGgGaAloD0MIAYqRJXOXUkCUhpRSlGgVTegDaBZHQINGNnM+u/11fZQoaAZoCWgPQwgXf9sTJNZTQJSGlFKUaBVN6ANoFkdAg2MKQzUI9nV9lChoBmgJaA9DCN0Ii4o45TlAlIaUUpRoFUvyaBZHQINlr2L5ylx1fZQoaAZoCWgPQwh88NqljZplQJSGlFKUaBVN6ANoFkdAg2t3jdYW+HV9lChoBmgJaA9DCL1uERjrFGFAlIaUUpRoFU3oA2gWR0CDcoE12q1gdX2UKGgGaAloD0MInzws1Jq5XECUhpRSlGgVTegDaBZHQIN00IVuaWp1fZQoaAZoCWgPQwgrptJPuOJmQJSGlFKUaBVN6ANoFkdAg3rw2/BWP3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-aterrizaje-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf74ed23f5b963c5dcb5e9708b0a00959cc6b31e8b674c4ade21023b26ef6812
|
3 |
+
size 144016
|
ppo-aterrizaje-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-aterrizaje-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff8db0f85f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff8db0f8680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff8db0f8710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff8db0f87a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff8db0f8830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff8db0f88c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff8db0f8950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff8db0f89e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff8db0f8a70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff8db0f8b00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff8db0f8b90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7ff8db0c0900>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651681306.4587274,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqP972gPlI/y5RmPDea0r4YRJC9QyrLPQAAAAAAAAAAbW02PtJokjxRfay7LTcjuj1bHD6/+SS7AACAPwAAgD/QHFK+OF2mPOEGCjvKNUS5R90rvoU5UToAAIA/AACAP6AvDT7Dszg7qjxLvCOGQbod/9I8w7MsuwAAgD8AAIA/M6MKvrhO0TqYNoC74pBOOKcLlrw6UJg6AACAPwAAgD/mNzK9g98EPa4ejD2W1W++K/zZvW1V8D0AAAAAAAAAAIAHAD/LSRq+QoeZu6yvcDlNrJa9ljIOtgAAgD8AAIA/5lYjvWAruT6CDsE8JDFrvsp9mr3qDBg9AAAAAAAAAACt7zK+hYe7PBOHXrvUOkc8ybFBvqL1izwAAAAAAAAAADNxTDy45te50q/oOia5NDXjb0C7fjYIugAAgD8AAIA/M/u/u6GStD887Be/apgOvFCu3ju1pgk+AAAAAAAAAACm6Fw+wyeQPvFpBD636zO+PY5ivKNqCr0AAAAAAAAAAID6FD1Up5k/moPiPNVh6r7yCKU8TUCqvQAAAAAAAAAAmt7jvSkMTbqel3s6gQuNNngnBrtMi5C5AACAPwAAgD9N+X49rjWHunPp6Lq3g3S1IMPeuss1BToAAIA/AACAP2LSj77Sy6+7nBi3ugZkrrd6ePk8KptyOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAABAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI176AXrgUXECUhpRSlIwBbJRN6AOMAXSUR0CAybbZezD5dX2UKGgGaAloD0MIRZ25h4QXYkCUhpRSlGgVTegDaBZHQIDPhUDMeOp1fZQoaAZoCWgPQwhSt7OvPLJeQJSGlFKUaBVN6ANoFkdAgOROl41P33V9lChoBmgJaA9DCCr/Wl657iHAlIaUUpRoFUvqaBZHQIDpbKFIuoR1fZQoaAZoCWgPQwi7Q4oBksdjQJSGlFKUaBVNzQJoFkdAgOmb1Iy0r3V9lChoBmgJaA9DCP6ZQXxgFFpAlIaUUpRoFU3oA2gWR0CA7G7rcCYDdX2UKGgGaAloD0MIA1slWBw+JECUhpRSlGgVTQIBaBZHQIDylnscABF1fZQoaAZoCWgPQwihoBSt3M1jQJSGlFKUaBVN6ANoFkdAgPcWphnanXV9lChoBmgJaA9DCPilft5UoF9AlIaUUpRoFU3oA2gWR0CA+Md4FA3UdX2UKGgGaAloD0MIAUwZOKBiW0CUhpRSlGgVTegDaBZHQID4z6vaDf51fZQoaAZoCWgPQwisi9toABNbQJSGlFKUaBVN6ANoFkdAgPm03XI2fnV9lChoBmgJaA9DCMIzoUli2SZAlIaUUpRoFUvUaBZHQIECWWUr08N1fZQoaAZoCWgPQwgw2A3bFh5cQJSGlFKUaBVN6ANoFkdAgQcTHsC1Z3V9lChoBmgJaA9DCPA2b5yUEGNAlIaUUpRoFU3oA2gWR0CBCy2FWXC1dX2UKGgGaAloD0MIxeV4BaIRXkCUhpRSlGgVTegDaBZHQIEMUlqrR0F1fZQoaAZoCWgPQwgZ/tMNFOJFQJSGlFKUaBVN6ANoFkdAgTyiMPz4DnV9lChoBmgJaA9DCFYsflPYYWZAlIaUUpRoFU2dAWgWR0CBPXd1MdtEdX2UKGgGaAloD0MI2jnNAu32RMCUhpRSlGgVS+hoFkdAgUWlsxfv4XV9lChoBmgJaA9DCIDUJk7uTWNAlIaUUpRoFU3oA2gWR0CBTBmyPdVOdX2UKGgGaAloD0MIeEfGavP1Q0CUhpRSlGgVTegDaBZHQIFO4HzH0bt1fZQoaAZoCWgPQwhnmNpSB3kWwJSGlFKUaBVLumgWR0CBUdTH80k4dX2UKGgGaAloD0MIVRaFXRREWkCUhpRSlGgVTegDaBZHQIFWPIXCTEB1fZQoaAZoCWgPQwjc8/xpoz1aQJSGlFKUaBVN6ANoFkdAgX+SMUAT7HV9lChoBmgJaA9DCDi9i/djnmNAlIaUUpRoFU3oA2gWR0CBh2yon8badX2UKGgGaAloD0MINKDejJrAX0CUhpRSlGgVTegDaBZHQIGNvUBnzxx1fZQoaAZoCWgPQwiobcMoiDxhQJSGlFKUaBVN6ANoFkdAgZIayjYZmHV9lChoBmgJaA9DCOqwwi2fcmNAlIaUUpRoFU3oA2gWR0CBk83eenQ6dX2UKGgGaAloD0MIb0bNV0kRZECUhpRSlGgVTegDaBZHQIGT1SjxkNF1fZQoaAZoCWgPQwgk06HTcwtiQJSGlFKUaBVN6ANoFkdAgZTLR8c+7nV9lChoBmgJaA9DCPmgZ7PqtV1AlIaUUpRoFU3oA2gWR0CBncRaouPFdX2UKGgGaAloD0MIr5P6srRbYkCUhpRSlGgVTegDaBZHQIGmcBQvYe11fZQoaAZoCWgPQwgjFFtB0+Y6QJSGlFKUaBVLtGgWR0CBpsJHiFTOdX2UKGgGaAloD0MIUtZvJqY0YUCUhpRSlGgVTegDaBZHQIGnjb5/LDB1fZQoaAZoCWgPQwjmkT8YeMxgQJSGlFKUaBVN6ANoFkdAgdhnVPN3XHV9lChoBmgJaA9DCD+MEB5tUV1AlIaUUpRoFU3oA2gWR0CB4N4L1EmZdX2UKGgGaAloD0MI83NDU/Z2YECUhpRSlGgVTegDaBZHQIHm2WfK6nR1fZQoaAZoCWgPQwhlcJS8OhVeQJSGlFKUaBVN6ANoFkdAgeluQ6p5vHV9lChoBmgJaA9DCPILryR56VpAlIaUUpRoFU3oA2gWR0CB7EOaOPvKdX2UKGgGaAloD0MIgpAsYAL8WECUhpRSlGgVTegDaBZHQIHwN/tpmEp1fZQoaAZoCWgPQwhHcY46Ojo6wJSGlFKUaBVL02gWR0CCB/xm03OwdX2UKGgGaAloD0MI4ue/B6+XakCUhpRSlGgVTVYCaBZHQIIPMx20Re11fZQoaAZoCWgPQwg8SiU8oR5cQJSGlFKUaBVN6ANoFkdAghhIgV45cXV9lChoBmgJaA9DCCAL0SFwS2JAlIaUUpRoFU3oA2gWR0CCH7eTmnwYdX2UKGgGaAloD0MIhpDz/j82PECUhpRSlGgVS8poFkdAgiJh9b5dnnV9lChoBmgJaA9DCLkzEwznQ1xAlIaUUpRoFU3oA2gWR0CCJZsdkrf+dX2UKGgGaAloD0MI6WD9n8NcCECUhpRSlGgVS7NoFkdAgiY5AQg9vHV9lChoBmgJaA9DCNL/ci1aUmNAlIaUUpRoFU3oA2gWR0CCKXXfZVXFdX2UKGgGaAloD0MI16VG6OdYYkCUhpRSlGgVTegDaBZHQIIq7EHdGiJ1fZQoaAZoCWgPQwj/Wl653nZgQJSGlFKUaBVN6ANoFkdAgivYgRsdk3V9lChoBmgJaA9DCGHij6LOfGFAlIaUUpRoFU3oA2gWR0CCNDVBlcyFdX2UKGgGaAloD0MIXiuhuyTuR0CUhpRSlGgVS61oFkdAgjSJ3os7MnV9lChoBmgJaA9DCLrcYKjDFlhAlIaUUpRoFU3oA2gWR0CCPIa1kUbldX2UKGgGaAloD0MI1HyVfOwcUECUhpRSlGgVS8RoFkdAgj0LVWjoIXV9lChoBmgJaA9DCHUdqilJSWJAlIaUUpRoFU3oA2gWR0CCPaLXtjTbdX2UKGgGaAloD0MIhv90AwU+CkCUhpRSlGgVS+NoFkdAgkFk6Lfk3nV9lChoBmgJaA9DCN2yQ/zDsj3AlIaUUpRoFUvpaBZHQIJC4BcRlH11fZQoaAZoCWgPQwh3ai43GKRcQJSGlFKUaBVN6ANoFkdAgkg+1a4c3nV9lChoBmgJaA9DCCPZI9QMzmBAlIaUUpRoFU3oA2gWR0CCdUruIAOsdX2UKGgGaAloD0MI1BBV+DO8GkCUhpRSlGgVS+VoFkdAgnjpWFN+LHV9lChoBmgJaA9DCAHg2LPndlxAlIaUUpRoFU3oA2gWR0CCesVh1DBudX2UKGgGaAloD0MId6IkJNKJYECUhpRSlGgVTVICaBZHQIJ8cExIre91fZQoaAZoCWgPQwjHuyNjtWJdQJSGlFKUaBVN6ANoFkdAgn0lRYRuj3V9lChoBmgJaA9DCK+ytikes2dAlIaUUpRoFU1dAWgWR0CCfSYQ8OkMdX2UKGgGaAloD0MIJO6x9KElYUCUhpRSlGgVTegDaBZHQIJ/RLPD50t1fZQoaAZoCWgPQwiCyY0iaz0bwJSGlFKUaBVL7mgWR0CCkOtL+PzWdX2UKGgGaAloD0MIfsUaLnLHIUCUhpRSlGgVS+RoFkdAgpJr9uP3jHV9lChoBmgJaA9DCOWbbW5MCzdAlIaUUpRoFUu4aBZHQIKmdU4rBj51fZQoaAZoCWgPQwjNzMzMzEdgQJSGlFKUaBVN6ANoFkdAgq3tNBWxQnV9lChoBmgJaA9DCPzfERWqjVtAlIaUUpRoFU3oA2gWR0CCs7RmbsnidX2UKGgGaAloD0MIf2q8dJMFaECUhpRSlGgVTegDaBZHQIK0Sp3os7N1fZQoaAZoCWgPQwisG++OjH9eQJSGlFKUaBVN6ANoFkdAgsQzRYzSC3V9lChoBmgJaA9DCMfa39kepTRAlIaUUpRoFUvjaBZHQILOOm+Cbtt1fZQoaAZoCWgPQwi5GW7A51ZgQJSGlFKUaBVN6ANoFkdAgs6n4oJAuHV9lChoBmgJaA9DCP93RIXqmGBAlIaUUpRoFU3oA2gWR0CCz1SR8twrdX2UKGgGaAloD0MIFoVdFL2AYECUhpRSlGgVTegDaBZHQILTjOcDr7h1fZQoaAZoCWgPQwiRR3AjZedbQJSGlFKUaBVN6ANoFkdAgtUUVSGahHV9lChoBmgJaA9DCDP+fcaFS15AlIaUUpRoFU3oA2gWR0CC2n5fMOf/dX2UKGgGaAloD0MI8UdRZ+7hOkCUhpRSlGgVS9poFkdAgtw/rSmZVnV9lChoBmgJaA9DCGqme53UDV3AlIaUUpRoFU0IAmgWR0CDBzZjhDPXdX2UKGgGaAloD0MIxOxl22l3ZECUhpRSlGgVTegDaBZHQIMHtDneSB91fZQoaAZoCWgPQwh716AvvctGwJSGlFKUaBVLymgWR0CDCObutwJgdX2UKGgGaAloD0MIPpP98zRPXUCUhpRSlGgVTegDaBZHQIMK5r8BMi91fZQoaAZoCWgPQwhLr83GSlw0QJSGlFKUaBVL0mgWR0CDDaajN6gNdX2UKGgGaAloD0MI8DDtm/trDMCUhpRSlGgVS/poFkdAgw2+v6j323V9lChoBmgJaA9DCGhbzTrjTmNAlIaUUpRoFU3oA2gWR0CDDgPwuuifdX2UKGgGaAloD0MIXyaKkDqDYkCUhpRSlGgVTegDaBZHQIMOloL5RCR1fZQoaAZoCWgPQwh8e9egL8ZhQJSGlFKUaBVN6ANoFkdAgxCPVurIYHV9lChoBmgJaA9DCLq/ety3Ei1AlIaUUpRoFUvQaBZHQIMZLNwBHTZ1fZQoaAZoCWgPQwiIf9jSo/tPQJSGlFKUaBVL6WgWR0CDH0S00FbFdX2UKGgGaAloD0MIUKbR5OKpY0CUhpRSlGgVTegDaBZHQIMjT63y7PJ1fZQoaAZoCWgPQwg/rDdqhWkdQJSGlFKUaBVL9GgWR0CDJEjps41hdX2UKGgGaAloD0MIlialoNtlQUCUhpRSlGgVS6xoFkdAgzL9jG1hLHV9lChoBmgJaA9DCOhoVUu6z2RAlIaUUpRoFU3oA2gWR0CDP0VX3g1ndX2UKGgGaAloD0MIAYqRJXOXUkCUhpRSlGgVTegDaBZHQINGNnM+u/11fZQoaAZoCWgPQwgXf9sTJNZTQJSGlFKUaBVN6ANoFkdAg2MKQzUI9nV9lChoBmgJaA9DCN0Ii4o45TlAlIaUUpRoFUvyaBZHQINlr2L5ylx1fZQoaAZoCWgPQwh88NqljZplQJSGlFKUaBVN6ANoFkdAg2t3jdYW+HV9lChoBmgJaA9DCL1uERjrFGFAlIaUUpRoFU3oA2gWR0CDcoE12q1gdX2UKGgGaAloD0MInzws1Jq5XECUhpRSlGgVTegDaBZHQIN00IVuaWp1fZQoaAZoCWgPQwgrptJPuOJmQJSGlFKUaBVN6ANoFkdAg3rw2/BWP3VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-aterrizaje-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b132f4f901263de122c8d38e7bf9bfc3d2d20e0fd27680d8181e63eff31e83f
|
3 |
+
size 84829
|
ppo-aterrizaje-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60435229224229829c99a06cef1a3ff0467d2a4d8e58ef9c15eb8a0eda92ea3b
|
3 |
+
size 43201
|
ppo-aterrizaje-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-aterrizaje-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32a09750d27b214df755a7e193e605613363fe3cd44bf1b4fe848df704f5589a
|
3 |
+
size 249999
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 208.67100061914743, "std_reward": 41.69375644116725, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T16:48:14.400683"}
|