--- license: cc-by-nc-4.0 inference: false datasets: - BramVanroy/alpaca-cleaned-dutch base_model: DAMO-NLP-MT/polylm-1.7b tags: - generated_from_trainer - alpaca - Transformers - PolyLM - text-generation-inference model-index: - name: polylm_1.7b_ft_alpaca_clean_dutch results: [] language: - nl library_name: peft pipeline_tag: text-generation --- # polylm_1.7b_ft_alpaca_clean_dutch This model is a fine-tuned version of [DAMO-NLP-MT/polylm-1.7b](https://huggingface.co/DAMO-NLP-MT/polylm-1.7b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 64 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0693 | 0.16 | 128 | 2.0915 | | 2.0029 | 0.33 | 256 | 2.0195 | | 2.0006 | 0.49 | 384 | 1.9779 | | 1.933 | 0.66 | 512 | 1.9409 | | 1.9532 | 0.82 | 640 | 1.9217 | | 1.8959 | 0.99 | 768 | 1.8978 | | 1.8237 | 1.15 | 896 | 1.8838 | | 1.8218 | 1.32 | 1024 | 1.8693 | | 1.8072 | 1.48 | 1152 | 1.8521 | | 1.8103 | 1.65 | 1280 | 1.8395 | | 1.8275 | 1.81 | 1408 | 1.8266 | | 1.7902 | 1.98 | 1536 | 1.8174 | ### Framework versions - PEFT 0.4.0 - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3 - PEFT 0.4.0