rockerritesh commited on
Commit
f9b6966
·
1 Parent(s): 01f2289

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md CHANGED
@@ -1,3 +1,81 @@
1
  ---
2
  license: mit
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - en
5
+ library_name: transformers
6
  ---
7
+
8
+
9
+ # MaiBERT_TF: Mithila Language Pretrained Transformer (TensorFlow)
10
+
11
+ ## Overview
12
+
13
+ MaiBERT_TF is a TensorFlow-based transformer model pretrained on Mithila language text data. This model can be used for a variety of natural language processing tasks, such as text generation, text classification, and more. It's pretrained using the Masked Language Modeling (MLM) objective, enabling it to understand the semantics of Mithila language.
14
+
15
+ ## Model Details
16
+
17
+ - **Model Name:** MaiBERT_TF
18
+ - **Architecture:** Transformer
19
+ - **Pretrained Framework:** TensorFlow
20
+ - **Language:** Mithila
21
+ - **Vocabulary Size:** [VOCAB_SIZE]
22
+ - **Model Size:** [MODEL_SIZE]
23
+ - **Tokenizer Used:** [TOKENIZER_NAME]
24
+
25
+ ## How to Use
26
+
27
+ You can easily use the MaiBERT_TF model for various NLP tasks. Here's how to get started:
28
+
29
+ 1. **Installation:**
30
+ Install the required libraries using the following command:
31
+
32
+ ```bash
33
+ pip install transformers tensorflow
34
+ ```
35
+
36
+ 2. **Loading the Model:**
37
+ Load the pretrained model using the Hugging Face Transformers library:
38
+
39
+ ```python
40
+ from transformers import TFAutoModelForMaskedLM, AutoTokenizer
41
+
42
+ model = TFAutoModelForMaskedLM.from_pretrained("rockerritesh/maiBERT_TF")
43
+ tokenizer = AutoTokenizer.from_pretrained("rockerritesh/maiBERT_TF")
44
+ ```
45
+
46
+ 3. **Usage:**
47
+ Once the model and tokenizer are loaded, you can use them for various tasks like text generation, text completion, and more. Here's an example of generating text:
48
+
49
+ ```python
50
+ input_text = "जानकी मन्दिर पवित्र हिन्दू मन्दिर छी"
51
+ inputs = tokenizer(input_text, return_tensors="tf", padding=True, truncation=True)
52
+
53
+ output = model.generate(inputs["input_ids"])
54
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
55
+ print("Generated Text:", generated_text)
56
+ ```
57
+
58
+ 4. **Fine-Tuning:**
59
+ If you want to fine-tune the pretrained model for a specific task, you can do so by loading the model using `TFAutoModelForSequenceClassification` and providing your own dataset.
60
+
61
+ ## Model Training Details
62
+
63
+ - **Training Data:** [TRAINING_DATA_SOURCE]
64
+ - **Training Objective:** Masked Language Modeling (MLM)
65
+ - **Training Steps:** [TRAINING_STEPS]
66
+ - **Batch Size:** [BATCH_SIZE]
67
+ - **Learning Rate:** [LEARNING_RATE]
68
+
69
+ ## Citation
70
+
71
+ If you use the MaiBERT_TF model in your research or projects, please consider citing this repository:
72
+
73
+ ```
74
+ @article{rockerritesh/maiBERT_TF,
75
+ title={MaiBERT_TF: Mithila Language Pretrained Transformer (TensorFlow)},
76
+ author={Your Name},
77
+ year={Year},
78
+ journal={GitHub repository},
79
+ howpublished={\url{https://github.com/rockerritesh/maiBERT_TF}}
80
+ }
81
+ ```