--- library_name: transformers license: apache-2.0 base_model: sshleifer/distilbart-xsum-12-6 tags: - generated_from_trainer model-index: - name: bart-abs-2409-1947-lr-0.0003-bs-2-maxep-6 results: [] --- # bart-abs-2409-1947-lr-0.0003-bs-2-maxep-6 This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.1441 - Rouge/rouge1: 0.3035 - Rouge/rouge2: 0.072 - Rouge/rougel: 0.2428 - Rouge/rougelsum: 0.2429 - Bertscore/bertscore-precision: 0.8724 - Bertscore/bertscore-recall: 0.8571 - Bertscore/bertscore-f1: 0.8646 - Meteor: 0.2108 - Gen Len: 29.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:| | 0.955 | 1.0 | 434 | 5.7740 | 0.2485 | 0.0542 | 0.1867 | 0.1867 | 0.8491 | 0.8557 | 0.8523 | 0.2552 | 54.0 | | 0.8434 | 2.0 | 868 | 5.6927 | 0.2599 | 0.0592 | 0.202 | 0.2017 | 0.8553 | 0.8626 | 0.8589 | 0.2583 | 46.0 | | 0.5948 | 3.0 | 1302 | 5.8907 | 0.2473 | 0.0528 | 0.1834 | 0.1833 | 0.8458 | 0.856 | 0.8508 | 0.2569 | 54.0 | | 0.4377 | 4.0 | 1736 | 6.5736 | 0.2591 | 0.0557 | 0.2009 | 0.2012 | 0.859 | 0.8605 | 0.8597 | 0.2511 | 48.0 | | 0.3416 | 5.0 | 2170 | 6.8597 | 0.3035 | 0.072 | 0.2428 | 0.2429 | 0.8724 | 0.8571 | 0.8646 | 0.2108 | 29.0 | | 0.268 | 6.0 | 2604 | 7.1441 | 0.3035 | 0.072 | 0.2428 | 0.2429 | 0.8724 | 0.8571 | 0.8646 | 0.2108 | 29.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 3.0.0 - Tokenizers 0.19.1