rohansb10 commited on
Commit
ece4663
1 Parent(s): 1f9a3f0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -1
README.md CHANGED
@@ -3,4 +3,60 @@ license: mit
3
  pipeline_tag: text-generation
4
  metrics:
5
  - accuracy
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  pipeline_tag: text-generation
4
  metrics:
5
  - accuracy
6
+ ---
7
+
8
+ # code
9
+
10
+
11
+ from unsloth import FastLanguageModel
12
+ import torch
13
+ max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
14
+ dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
15
+ load_in_4bit = True
16
+
17
+ model, tokenizer = FastLanguageModel.from_pretrained(
18
+ model_name = "rohansb10/python_code_gen_using_llama-3.1_8b", # YOUR MODEL YOU USED FOR TRAINING
19
+ max_seq_length = max_seq_length,
20
+ dtype = dtype,
21
+ load_in_4bit = load_in_4bit,
22
+ )
23
+ FastLanguageModel.for_inference(model) # Enable native 2x faster inference
24
+
25
+ # alpaca_prompt = You MUST copy from above!
26
+
27
+ alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
28
+
29
+ ### Instruction:
30
+ {}
31
+
32
+ ### Input:
33
+ {}
34
+
35
+ ### Response:
36
+ {}"""
37
+
38
+ EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
39
+ def formatting_prompts_func(examples):
40
+ instructions = examples["instruction"]
41
+ inputs = examples["input"]
42
+ outputs = examples["output"]
43
+ texts = []
44
+ for instruction, input, output in zip(instructions, inputs, outputs):
45
+ # Must add EOS_TOKEN, otherwise your generation will go on forever!
46
+ text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
47
+ texts.append(text)
48
+ return { "text" : texts, }
49
+
50
+ inputs = tokenizer(
51
+ [
52
+ alpaca_prompt.format(
53
+ "Develop a function in Python that prints out the Pascal's triangle for a given number of rows.", # instruction
54
+ "", # input
55
+ "", # output - leave this blank for generation!
56
+ )
57
+ ], return_tensors = "pt")
58
+
59
+ from transformers import TextStreamer
60
+ text_streamer = TextStreamer(tokenizer)
61
+ _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
62
+