--- base_model: meta-llama/Llama-3.2-11B-Vision-Instruct library_name: peft license: llama3.2 metrics: - bleu - rouge tags: - trl - sft - generated_from_trainer model-index: - name: Llama-3.2-11B-Vision-Instruct results: [] --- # Llama-3.2-11B-Vision-Instruct This model is a fine-tuned version of [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7115 - Bleu: 0.3191 - Rouge1: 0.6462 - Rouge2: 0.3482 - Rougel: 0.5529 - Bertscore Precision: 0.8764 - Bertscore Recall: 0.8935 - Bertscore F1: 0.8848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Rougel | Bertscore Precision | Bertscore Recall | Bertscore F1 | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:------:|:-------------------:|:----------------:|:------------:| | 1.7942 | 0.6202 | 50 | 1.7909 | 0.2890 | 0.6131 | 0.3240 | 0.5197 | 0.8199 | 0.8912 | 0.8535 | | 1.7177 | 1.2403 | 100 | 1.7262 | 0.3165 | 0.6445 | 0.3454 | 0.5501 | 0.8724 | 0.8928 | 0.8825 | | 1.7198 | 1.8605 | 150 | 1.7158 | 0.3184 | 0.6462 | 0.3475 | 0.5520 | 0.8753 | 0.8932 | 0.8841 | | 1.6898 | 2.4806 | 200 | 1.7115 | 0.3191 | 0.6462 | 0.3482 | 0.5529 | 0.8764 | 0.8935 | 0.8848 | ### Framework versions - PEFT 0.13.0 - Transformers 4.45.2 - Pytorch 2.2.0a0+81ea7a4 - Datasets 3.0.1 - Tokenizers 0.20.1