--- base_model: llava-hf/llava-1.5-7b-hf library_name: peft license: llama2 metrics: - bleu - rouge tags: - trl - sft - generated_from_trainer model-index: - name: llava_test results: [] --- # llava_test This model is a fine-tuned version of [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5219 - Bleu: 0.0477 - Rouge1: 0.2804 - Rouge2: 0.0966 - Rougel: 0.2140 - Bertscore Precision: 0.7005 - Bertscore Recall: 0.7759 - Bertscore F1: 0.7362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Rougel | Bertscore Precision | Bertscore Recall | Bertscore F1 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:-------------------:|:----------------:|:------------:| | 0.3261 | 10.0 | 10 | 2.5219 | 0.0477 | 0.2804 | 0.0966 | 0.2140 | 0.7005 | 0.7759 | 0.7362 | ### Framework versions - PEFT 0.13.0 - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.1