--- library_name: transformers license: llama2 base_model: llava-hf/llava-1.5-7b-hf tags: - trl - sft - generated_from_trainer metrics: - bleu - rouge model-index: - name: sft-llava-1.5-7b-hf3 results: [] --- # sft-llava-1.5-7b-hf3 This model is a fine-tuned version of [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 13.1181 - Bleu: 0.0 - Rouge1: 0.0651 - Rouge2: 0.0043 - Rougel: 0.0508 - Bertscore Precision: 0.6243 - Bertscore Recall: 0.7482 - Bertscore F1: 0.6806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Rougel | Bertscore Precision | Bertscore Recall | Bertscore F1 | |:-------------:|:------:|:----:|:---------------:|:----:|:------:|:------:|:------:|:-------------------:|:----------------:|:------------:| | 6.903 | 0.3101 | 200 | 22.1793 | 0.0 | 0.0440 | 0.0 | 0.0441 | 0.6243 | 0.7482 | 0.6806 | | 6.585 | 0.6202 | 400 | 27.3559 | 0.0 | 0.0546 | 0.0043 | 0.0425 | 0.6243 | 0.7482 | 0.6806 | | 6.5197 | 0.9302 | 600 | 26.1987 | 0.0 | 0.0546 | 0.0043 | 0.0425 | 0.6243 | 0.7482 | 0.6806 | | 6.2662 | 1.2403 | 800 | 21.1666 | 0.0 | 0.0633 | 0.0043 | 0.0520 | 0.6243 | 0.7482 | 0.6806 | | 6.0303 | 1.5504 | 1000 | 21.0359 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 | | 5.7602 | 1.8605 | 1200 | 19.0201 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 | | 5.6359 | 2.1705 | 1400 | 18.6311 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 | | 5.5176 | 2.4806 | 1600 | 17.9442 | 0.0 | 0.0649 | 0.0043 | 0.0496 | 0.6243 | 0.7482 | 0.6806 | | 5.4608 | 2.7907 | 1800 | 16.6921 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 | | 5.2881 | 3.1008 | 2000 | 15.3415 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 | | 5.2429 | 3.4109 | 2200 | 14.8475 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 | | 5.1929 | 3.7209 | 2400 | 14.2828 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 | | 5.1259 | 4.0310 | 2600 | 13.8075 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 | | 5.0379 | 4.3411 | 2800 | 13.4751 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 | | 5.1071 | 4.6512 | 3000 | 13.2275 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 | | 5.1082 | 4.9612 | 3200 | 13.1181 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.2.0a0+81ea7a4 - Datasets 3.0.1 - Tokenizers 0.20.1