--- base_model: llava-hf/llava-1.5-7b-hf library_name: peft license: llama2 metrics: - bleu - rouge tags: - trl - sft - generated_from_trainer model-index: - name: sft-llava-1.5-7b_new results: [] --- # sft-llava-1.5-7b_new This model is a fine-tuned version of [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9504 - Bleu: 0.1425 - Rouge1: 0.4583 - Rouge2: 0.1850 - Rougel: 0.3579 - Bertscore Precision: 0.6782 - Bertscore Recall: 0.7679 - Bertscore F1: 0.7201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Rougel | Bertscore Precision | Bertscore Recall | Bertscore F1 | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:------:|:-------------------:|:----------------:|:------------:| | 1.9977 | 0.9922 | 80 | 1.9963 | 0.1395 | 0.4530 | 0.1844 | 0.3520 | 0.6764 | 0.7670 | 0.7188 | | 1.9336 | 1.9845 | 160 | 1.9504 | 0.1425 | 0.4583 | 0.1850 | 0.3579 | 0.6782 | 0.7679 | 0.7201 | ### Framework versions - PEFT 0.13.0 - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.1