--- library_name: peft license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-banking77-classifier-lora results: [] --- # bert-banking77-classifier-lora This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6999 - F1: 0.8264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.3431 | 1.0 | 313 | 2.1174 | 0.3925 | | 1.3737 | 2.0 | 626 | 1.2632 | 0.6508 | | 0.9534 | 3.0 | 939 | 0.9034 | 0.7581 | | 0.7365 | 4.0 | 1252 | 0.7530 | 0.8130 | | 0.6526 | 5.0 | 1565 | 0.6999 | 0.8264 | ### Framework versions - PEFT 0.10.0 - Transformers 4.49.0 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0