roneneldan b-gendron commited on
Commit
2ad0a16
·
verified ·
1 Parent(s): 85c27af

Better formatting of hyperparams and code snippet (#19)

Browse files

- Better formatting of hyperparams and code snippet (f6e92576a39bb842a2e1e3803ec9993d362a6c46)


Co-authored-by: Barbara Gendron <b-gendron@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +5 -4
README.md CHANGED
@@ -11,6 +11,7 @@ License: mit
11
  ---
12
  hyperparams used to train this model:
13
 
 
14
  lr = 5e-4,
15
  lr_schedule = constant,
16
  wd=0.1,
@@ -18,17 +19,16 @@ adam_beta1=0.9, adam_beta2 = 0.95,
18
  context_length=512,
19
  batch_size=80,
20
  gradient_accumulation_steps=16
 
21
 
22
  ------ EXAMPLE USAGE ---
23
 
 
24
  from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
25
 
26
  model = AutoModelForCausalLM.from_pretrained('roneneldan/TinyStories-33M')
27
-
28
  tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
29
-
30
  prompt = "Once upon a time there was"
31
-
32
  input_ids = tokenizer.encode(prompt, return_tensors="pt")
33
 
34
  # Generate completion
@@ -38,4 +38,5 @@ output = model.generate(input_ids, max_length = 1000, num_beams=1)
38
  output_text = tokenizer.decode(output[0], skip_special_tokens=True)
39
 
40
  # Print the generated text
41
- print(output_text)
 
 
11
  ---
12
  hyperparams used to train this model:
13
 
14
+ ```
15
  lr = 5e-4,
16
  lr_schedule = constant,
17
  wd=0.1,
 
19
  context_length=512,
20
  batch_size=80,
21
  gradient_accumulation_steps=16
22
+ ```
23
 
24
  ------ EXAMPLE USAGE ---
25
 
26
+ ```py
27
  from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
28
 
29
  model = AutoModelForCausalLM.from_pretrained('roneneldan/TinyStories-33M')
 
30
  tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
 
31
  prompt = "Once upon a time there was"
 
32
  input_ids = tokenizer.encode(prompt, return_tensors="pt")
33
 
34
  # Generate completion
 
38
  output_text = tokenizer.decode(output[0], skip_special_tokens=True)
39
 
40
  # Print the generated text
41
+ print(output_text)
42
+ ```