--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9448387096774193 --- # distilbert-base-uncased-distilled This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2061 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7308 | 1.0 | 318 | 1.1633 | 0.7394 | | 0.8985 | 2.0 | 636 | 0.5726 | 0.8635 | | 0.4735 | 3.0 | 954 | 0.3350 | 0.9187 | | 0.298 | 4.0 | 1272 | 0.2562 | 0.9361 | | 0.2313 | 5.0 | 1590 | 0.2304 | 0.9413 | | 0.2043 | 6.0 | 1908 | 0.2190 | 0.9432 | | 0.1904 | 7.0 | 2226 | 0.2130 | 0.9445 | | 0.1829 | 8.0 | 2544 | 0.2091 | 0.9442 | | 0.1782 | 9.0 | 2862 | 0.2066 | 0.9455 | | 0.1762 | 10.0 | 3180 | 0.2061 | 0.9448 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1