rossevine commited on
Commit
e77144b
1 Parent(s): bce978d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/wav2vec2-large-xlsr-53
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - wer
8
+ model-index:
9
+ - name: Model_G_2
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # Model_G_2
17
+
18
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.7332
21
+ - Wer: 1.0098
22
+ - Cer: 0.7490
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 0.0003
42
+ - train_batch_size: 16
43
+ - eval_batch_size: 8
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 2
46
+ - total_train_batch_size: 32
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_steps: 500
50
+ - num_epochs: 30
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
55
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
56
+ | 3.5212 | 2.57 | 400 | 0.7741 | 1.0236 | 0.7838 |
57
+ | 0.3158 | 5.14 | 800 | 0.6119 | 1.0085 | 0.7600 |
58
+ | 0.1522 | 7.72 | 1200 | 0.6402 | 1.0215 | 0.7521 |
59
+ | 0.102 | 10.29 | 1600 | 0.6226 | 1.0134 | 0.7540 |
60
+ | 0.0752 | 12.86 | 2000 | 0.6474 | 1.0365 | 0.7501 |
61
+ | 0.0627 | 15.43 | 2400 | 0.6617 | 1.0169 | 0.7503 |
62
+ | 0.0535 | 18.01 | 2800 | 0.6818 | 1.0116 | 0.7495 |
63
+ | 0.0432 | 20.58 | 3200 | 0.7056 | 1.0125 | 0.7536 |
64
+ | 0.0383 | 23.15 | 3600 | 0.6953 | 1.0096 | 0.7448 |
65
+ | 0.0347 | 25.72 | 4000 | 0.7217 | 1.0202 | 0.7457 |
66
+ | 0.0301 | 28.3 | 4400 | 0.7332 | 1.0098 | 0.7490 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.31.0
72
+ - Pytorch 2.0.1+cu117
73
+ - Datasets 1.18.3
74
+ - Tokenizers 0.13.3