reach-vb HF staff pcuenq HF staff commited on
Commit
6eaee04
1 Parent(s): 8579973

Delete patch before release (#3)

Browse files

- Delete before release (7662a4150a62440e5cd64bc7c6cf1c556e00e573)


Co-authored-by: Pedro Cuenca <pcuenq@users.noreply.huggingface.co>

Files changed (1) hide show
  1. patch.diff +0 -291
patch.diff DELETED
@@ -1,291 +0,0 @@
1
- diff --git a/src/transformers/models/llama/convert_llama_weights_to_hf.py b/src/transformers/models/llama/convert_llama_weights_to_hf.py
2
- index a0fbe4680..8b0ce2b13 100644
3
- --- a/src/transformers/models/llama/convert_llama_weights_to_hf.py
4
- +++ b/src/transformers/models/llama/convert_llama_weights_to_hf.py
5
- @@ -17,10 +17,10 @@ import json
6
- import os
7
- import shutil
8
- import warnings
9
- -
10
- +from typing import List
11
- import torch
12
-
13
- -from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer, PreTrainedTokenizerFast
14
- +from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer, PreTrainedTokenizerFast, GenerationConfig
15
- from transformers.convert_slow_tokenizer import TikTokenConverter
16
-
17
-
18
- @@ -85,8 +85,12 @@ NUM_SHARDS = {
19
- "65B": 8,
20
- "70B": 8,
21
- "70Bf": 8,
22
- + "405B": 8,
23
- + "405B-MP16": 16,
24
- }
25
-
26
- +CONTEXT_LENGTH_FOR_VERSION = {"3.1": 131072, "3": 8192, "2": 4096, "1": 2048}
27
- +
28
-
29
- def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
30
- return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)
31
- @@ -107,9 +111,10 @@ def write_model(
32
- input_base_path,
33
- model_size=None,
34
- safe_serialization=True,
35
- - llama_version=1,
36
- + llama_version="1",
37
- vocab_size=None,
38
- num_shards=None,
39
- + instruct=False,
40
- ):
41
- os.makedirs(model_path, exist_ok=True)
42
- tmp_model_path = os.path.join(model_path, "tmp")
43
- @@ -125,18 +130,11 @@ def write_model(
44
- dims_per_head = dim // n_heads
45
- base = params.get("rope_theta", 10000.0)
46
- inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
47
- - if base > 10000.0 and llama_version != 3:
48
- + if base > 10000.0 and float(llama_version) < 3:
49
- max_position_embeddings = 16384
50
- else:
51
- - # Depending on the Llama version, the default max_position_embeddings has different values.
52
- - if llama_version == 1:
53
- - max_position_embeddings = 2048
54
- - elif llama_version == 2:
55
- - max_position_embeddings = 4096
56
- - elif llama_version == 3:
57
- - max_position_embeddings = 8192
58
- -
59
- - vocab_size = vocab_size if vocab_size is not None else 32000
60
- + max_position_embeddings = CONTEXT_LENGTH_FOR_VERSION[llama_version]
61
- +
62
- if params.get("n_kv_heads", None) is not None:
63
- num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
64
- num_key_value_heads_per_shard = num_key_value_heads // num_shards
65
- @@ -144,8 +142,7 @@ def write_model(
66
- else: # compatibility with other checkpoints
67
- num_key_value_heads = n_heads
68
- num_key_value_heads_per_shard = n_heads_per_shard
69
- - key_value_dim = dims_per_head * num_key_value_heads
70
- - print(num_shards, num_key_value_heads, num_key_value_heads_per_shard, key_value_dim)
71
- + key_value_dim = dim
72
-
73
- # permute for sliced rotary
74
- def permute(w, n_heads, dim1=dim, dim2=dim):
75
- @@ -159,11 +156,9 @@ def write_model(
76
- loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
77
- else:
78
- # Sharded
79
- - loaded = [
80
- - torch.load(os.path.join(input_base_path, file), map_location="cpu")
81
- - for file in os.listdir(input_base_path)
82
- - if file.endswith(".pth")
83
- - ]
84
- + checkpoint_list = sorted([file for file in os.listdir(input_base_path) if file.endswith(".pth")])
85
- + print("Loading in order:", checkpoint_list)
86
- + loaded = [torch.load(os.path.join(input_base_path, file), map_location="cpu") for file in checkpoint_list]
87
- param_count = 0
88
- index_dict = {"weight_map": {}}
89
- for layer_i in range(n_layers):
90
- @@ -263,7 +258,7 @@ def write_model(
91
- "lm_head.weight": loaded["output.weight"],
92
- }
93
- else:
94
- - concat_dim = 0 if llama_version == 3 else 1
95
- + concat_dim = 0 if llama_version in ['3', '3.1'] else 1
96
- state_dict = {
97
- "model.norm.weight": loaded[0]["norm.weight"],
98
- "model.embed_tokens.weight": torch.cat(
99
- @@ -282,6 +277,18 @@ def write_model(
100
- write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
101
- ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1
102
- multiple_of = params["multiple_of"] if "multiple_of" in params else 256
103
- +
104
- + if llama_version in ['3', '3.1']:
105
- + bos_token_id = 128000
106
- +
107
- + if instruct:
108
- + eos_token_id = [128001, 128008, 128009]
109
- + else:
110
- + eos_token_id = 128001
111
- + else:
112
- + bos_token_id = 1
113
- + eos_token_id = 2
114
- +
115
- config = LlamaConfig(
116
- hidden_size=dim,
117
- intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of),
118
- @@ -292,11 +299,21 @@ def write_model(
119
- vocab_size=vocab_size,
120
- rope_theta=base,
121
- max_position_embeddings=max_position_embeddings,
122
- - bos_token_id=128000 if llama_version == 3 else 1,
123
- - eos_token_id=128001 if llama_version == 3 else 2,
124
- + bos_token_id=bos_token_id,
125
- + eos_token_id=eos_token_id,
126
- )
127
- config.save_pretrained(tmp_model_path)
128
-
129
- + if instruct:
130
- + generation_config = GenerationConfig(
131
- + do_sample=True,
132
- + temperature=0.6,
133
- + top_p=0.9,
134
- + bos_token_id=bos_token_id,
135
- + eos_token_id=eos_token_id,
136
- + )
137
- + generation_config.save_pretrained(tmp_model_path)
138
- +
139
- # Make space so we can load the model properly now.
140
- del state_dict
141
- del loaded
142
- @@ -313,7 +330,7 @@ def write_model(
143
-
144
-
145
- class Llama3Converter(TikTokenConverter):
146
- - def __init__(self, vocab_file, num_reserved_special_tokens=256, **kwargs):
147
- + def __init__(self, vocab_file, special_tokens=None, instruct=False, model_max_length=None, **kwargs):
148
- super().__init__(vocab_file, **kwargs)
149
- tokenizer = self.converted()
150
- chat_template = (
151
- @@ -327,34 +344,27 @@ class Llama3Converter(TikTokenConverter):
152
- "{% endfor %}"
153
- "{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}"
154
- )
155
- - num_reserved_special_tokens = 256
156
- - special_tokens = [
157
- - "<|begin_of_text|>",
158
- - "<|end_of_text|>",
159
- - "<|reserved_special_token_0|>",
160
- - "<|reserved_special_token_1|>",
161
- - "<|reserved_special_token_2|>",
162
- - "<|reserved_special_token_3|>",
163
- - "<|start_header_id|>",
164
- - "<|end_header_id|>",
165
- - "<|reserved_special_token_4|>",
166
- - "<|eot_id|>", # end of turn
167
- - ] + [f"<|reserved_special_token_{i}|>" for i in range(5, num_reserved_special_tokens - 5)]
168
- tokenizer.add_special_tokens(special_tokens)
169
-
170
- self.tokenizer = PreTrainedTokenizerFast(
171
- tokenizer_object=tokenizer,
172
- bos_token="<|begin_of_text|>",
173
- - eos_token="<|end_of_text|>",
174
- - chat_template=chat_template,
175
- + eos_token="<|end_of_text|>" if not instruct else "<|eot_id|>",
176
- + chat_template=chat_template if instruct else None,
177
- model_input_names=["input_ids", "attention_mask"],
178
- + model_max_length=model_max_length,
179
- )
180
-
181
-
182
- -def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version=2):
183
- +def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version="2", special_tokens=None, instruct=False):
184
- tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
185
- - if llama_version == 3:
186
- - tokenizer = Llama3Converter(input_tokenizer_path).tokenizer
187
- + if llama_version in ["3", "3.1"]:
188
- + tokenizer = Llama3Converter(
189
- + input_tokenizer_path,
190
- + special_tokens,
191
- + instruct,
192
- + model_max_length=CONTEXT_LENGTH_FOR_VERSION[llama_version]
193
- + ).tokenizer
194
- else:
195
- tokenizer = tokenizer_class(input_tokenizer_path)
196
- print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
197
- @@ -362,6 +372,37 @@ def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version=2):
198
- return tokenizer
199
-
200
-
201
- +DEFAULT_LLAMA_SPECIAL_TOKENS = {
202
- + "3": [
203
- + "<|begin_of_text|>",
204
- + "<|end_of_text|>",
205
- + "<|reserved_special_token_0|>",
206
- + "<|reserved_special_token_1|>",
207
- + "<|reserved_special_token_2|>",
208
- + "<|reserved_special_token_3|>",
209
- + "<|start_header_id|>",
210
- + "<|end_header_id|>",
211
- + "<|reserved_special_token_4|>",
212
- + "<|eot_id|>", # end of turn
213
- + ]
214
- + + [f"<|reserved_special_token_{i}|>" for i in range(5, 256 - 5)],
215
- + "3.1": [
216
- + "<|begin_of_text|>",
217
- + "<|end_of_text|>",
218
- + "<|reserved_special_token_0|>",
219
- + "<|reserved_special_token_1|>",
220
- + "<|finetune_right_pad_id|>",
221
- + "<|reserved_special_token_2|>",
222
- + "<|start_header_id|>",
223
- + "<|end_header_id|>",
224
- + "<|eom_id|>", # end of message
225
- + "<|eot_id|>", # end of turn
226
- + "<|python_tag|>",
227
- + ]
228
- + + [f"<|reserved_special_token_{i}|>" for i in range(3, 256 - 8)],
229
- +}
230
- +
231
- +
232
- def main():
233
- parser = argparse.ArgumentParser()
234
- parser.add_argument(
235
- @@ -383,9 +424,9 @@ def main():
236
- # Different Llama versions used different default values for max_position_embeddings, hence the need to be able to specify which version is being used.
237
- parser.add_argument(
238
- "--llama_version",
239
- - choices=[1, 2, 3],
240
- - default=1,
241
- - type=int,
242
- + choices=["1", "2", "3", "3.1"],
243
- + default="1",
244
- + type=str,
245
- help="Version of the Llama model to convert. Currently supports Llama1 and Llama2. Controls the context size",
246
- )
247
- parser.add_argument(
248
- @@ -394,11 +435,34 @@ def main():
249
- type=int,
250
- help="The number of individual shards used for the model. Does not have to be the same as the number of consolidated_xx.pth",
251
- )
252
- + parser.add_argument(
253
- + "--special_tokens",
254
- + default=None,
255
- + type=List[str],
256
- + help="The list of special tokens that should be added to the model.",
257
- + )
258
- + parser.add_argument(
259
- + "--instruct",
260
- + default=False,
261
- + type=bool,
262
- + help="Whether the model is an instruct model or not. Will affect special tokens for llama 3.1.",
263
- + )
264
- args = parser.parse_args()
265
- if args.model_size is None and args.num_shards is None:
266
- raise ValueError("You have to set at least `num_shards` if you are not giving the `model_size`")
267
- + if args.special_tokens is None:
268
- + args.special_tokens = DEFAULT_LLAMA_SPECIAL_TOKENS[str(args.llama_version)]
269
- +
270
- spm_path = os.path.join(args.input_dir, "tokenizer.model")
271
- - vocab_size = len(write_tokenizer(args.output_dir, spm_path, llama_version=args.llama_version))
272
- + vocab_size = len(
273
- + write_tokenizer(
274
- + args.output_dir,
275
- + spm_path,
276
- + llama_version=args.llama_version,
277
- + special_tokens=args.special_tokens,
278
- + instruct=args.instruct
279
- + )
280
- + )
281
- if args.model_size != "tokenizer_only":
282
- write_model(
283
- model_path=args.output_dir,
284
- @@ -408,6 +472,7 @@ def main():
285
- llama_version=args.llama_version,
286
- vocab_size=vocab_size,
287
- num_shards=args.num_shards,
288
- + instruct=args.instruct
289
- )
290
-
291
-