File size: 2,792 Bytes
34f2af4 46a62f4 92e0f78 46a62f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
license: apache-2.0
---
This model is a BERT-based Location Mention Recognition model that is adopted from the [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). The model identifies the toponyms' spans in the text and predicts their location types. The location type can be coarse-grained (e.g., country, city, etc.) and fine-grained (e.g., street, POI, etc.)
The model is trained using the training splits of all events from [IDRISI-R dataset](https://github.com/rsuwaileh/IDRISI) under the `Type-based` LMR mode and using the `Time-based` version of the data. You can download this data in `BILOU` format from [here](https://github.com/rsuwaileh/IDRISI/tree/main/data/LMR/AR/gold-timebased-bilou/). More details about the models are available [here](https://github.com/rsuwaileh/IDRISI/tree/main/models).
* Different variants of the model are available through HuggingFace:
- [rsuwaileh/IDRISI-LMR-AR-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-random-typeless/)
- [rsuwaileh/IDRISI-LMR-AR-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-random-typebased/)
- [rsuwaileh/IDRISI-LMR-AR-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-timebased-typeless/)
* English models are also available:
- [rsuwaileh/IDRISI-LMR-EN-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typeless/)
- [rsuwaileh/IDRISI-LMR-EN-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typebased/)
- [rsuwaileh/IDRISI-LMR-EN-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typeless/)
- [rsuwaileh/IDRISI-LMR-EN-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typebased/)
To cite the models:
```
@article{suwaileh2022tlLMR4disaster,
title={When a Disaster Happens, We Are Ready: Location Mention Recognition from Crisis Tweets},
author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad and Sajjad, Hassan},
journal={International Journal of Disaster Risk Reduction},
year={2022}
}
@inproceedings{suwaileh2020tlLMR4disaster,
title={Are We Ready for this Disaster? Towards Location Mention Recognition from Crisis Tweets},
author={Suwaileh, Reem and Imran, Muhammad and Elsayed, Tamer and Sajjad, Hassan},
booktitle={Proceedings of the 28th International Conference on Computational Linguistics},
pages={6252--6263},
year={2020}
}
```
To cite the IDRISI-R dataset:
```
@article{rsuwaileh2022Idrisi-r,
title={IDRISI-R: Large-scale English and Arabic Location Mention Recognition Datasets for Disaster Response over Twitter},
author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad},
journal={...},
volume={...},
pages={...},
year={2022},
publisher={...}
}
```
|