Commit
•
edc500f
0
Parent(s):
Duplicate from THUDM/CogVideoX-2b
Browse filesCo-authored-by: zR <zRzRzRzRzRzRzR@users.noreply.huggingface.co>
- .gitattributes +35 -0
- .gitignore +9 -0
- LICENSE +201 -0
- README.md +332 -0
- README_zh.md +305 -0
- model_index.json +24 -0
- scheduler/scheduler_config.json +18 -0
- text_encoder/config.json +32 -0
- text_encoder/model-00001-of-00002.safetensors +3 -0
- text_encoder/model-00002-of-00002.safetensors +3 -0
- text_encoder/model.safetensors.index.json +226 -0
- tokenizer/added_tokens.json +102 -0
- tokenizer/special_tokens_map.json +125 -0
- tokenizer/spiece.model +3 -0
- tokenizer/tokenizer_config.json +940 -0
- transformer/config.json +28 -0
- transformer/diffusion_pytorch_model.safetensors +3 -0
- vae/config.json +39 -0
- vae/diffusion_pytorch_model.safetensors +3 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
output/
|
2 |
+
*__pycache__/
|
3 |
+
samples*/
|
4 |
+
runs/
|
5 |
+
checkpoints/
|
6 |
+
master_ip
|
7 |
+
logs/
|
8 |
+
*.DS_Store
|
9 |
+
.idea
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright 2024 CogVideo Model Team @ Zhipu AI
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- cogvideox
|
7 |
+
- video-generation
|
8 |
+
- thudm
|
9 |
+
- text-to-video
|
10 |
+
inference: false
|
11 |
+
---
|
12 |
+
|
13 |
+
# CogVideoX-2B
|
14 |
+
|
15 |
+
<p style="text-align: center;">
|
16 |
+
<div align="center">
|
17 |
+
<img src=https://github.com/THUDM/CogVideo/raw/main/resources/logo.svg width="50%"/>
|
18 |
+
</div>
|
19 |
+
<p align="center">
|
20 |
+
<a href="https://huggingface.co/THUDM/CogVideoX-2b/blob/main/README_zh.md">📄 中文阅读</a> |
|
21 |
+
<a href="https://huggingface.co/spaces/THUDM/CogVideoX-2B-Space">🤗 Huggingface Space</a> |
|
22 |
+
<a href="https://github.com/THUDM/CogVideo">🌐 Github </a> |
|
23 |
+
<a href="https://arxiv.org/pdf/2408.06072">📜 arxiv </a>
|
24 |
+
</p>
|
25 |
+
<p align="center">
|
26 |
+
📍 Visit <a href="https://chatglm.cn/video?lang=en?fr=osm_cogvideo">QingYing</a> and <a href="https://open.bigmodel.cn/?utm_campaign=open&_channel_track_key=OWTVNma9">API Platform</a> to experience commercial video generation models.
|
27 |
+
</p>
|
28 |
+
|
29 |
+
## Demo Show
|
30 |
+
|
31 |
+
<!DOCTYPE html>
|
32 |
+
<html lang="en">
|
33 |
+
<head>
|
34 |
+
<meta charset="UTF-8">
|
35 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
36 |
+
<title>Video Gallery with Captions</title>
|
37 |
+
<style>
|
38 |
+
.video-container {
|
39 |
+
display: flex;
|
40 |
+
flex-wrap: wrap;
|
41 |
+
justify-content: space-around;
|
42 |
+
}
|
43 |
+
.video-item {
|
44 |
+
width: 45%;
|
45 |
+
margin-bottom: 20px;
|
46 |
+
transition: transform 0.3s;
|
47 |
+
}
|
48 |
+
.video-item:hover {
|
49 |
+
transform: scale(1.1);
|
50 |
+
}
|
51 |
+
.caption {
|
52 |
+
text-align: center;
|
53 |
+
margin-top: 10px;
|
54 |
+
font-size: 11px;
|
55 |
+
}
|
56 |
+
</style>
|
57 |
+
</head>
|
58 |
+
<body>
|
59 |
+
<div class="video-container">
|
60 |
+
<div class="video-item">
|
61 |
+
<video width="100%" controls>
|
62 |
+
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/1.mp4" type="video/mp4">
|
63 |
+
</video>
|
64 |
+
<div class="caption">A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting.</div>
|
65 |
+
</div>
|
66 |
+
<div class="video-item">
|
67 |
+
<video width="100%" controls>
|
68 |
+
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/2.mp4" type="video/mp4">
|
69 |
+
</video>
|
70 |
+
<div class="caption">The camera follows behind a white vintage SUV with a black roof rack as it speeds up a steep dirt road surrounded by pine trees on a steep mountain slope, dust kicks up from it’s tires, the sunlight shines on the SUV as it speeds along the dirt road, casting a warm glow over the scene. The dirt road curves gently into the distance, with no other cars or vehicles in sight. The trees on either side of the road are redwoods, with patches of greenery scattered throughout. The car is seen from the rear following the curve with ease, making it seem as if it is on a rugged drive through the rugged terrain. The dirt road itself is surrounded by steep hills and mountains, with a clear blue sky above with wispy clouds.</div>
|
71 |
+
</div>
|
72 |
+
<div class="video-item">
|
73 |
+
<video width="100%" controls>
|
74 |
+
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/3.mp4" type="video/mp4">
|
75 |
+
</video>
|
76 |
+
<div class="caption">A street artist, clad in a worn-out denim jacket and a colorful bandana, stands before a vast concrete wall in the heart, holding a can of spray paint, spray-painting a colorful bird on a mottled wall.</div>
|
77 |
+
</div>
|
78 |
+
<div class="video-item">
|
79 |
+
<video width="100%" controls>
|
80 |
+
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/4.mp4" type="video/mp4">
|
81 |
+
</video>
|
82 |
+
<div class="caption"> In the haunting backdrop of a war-torn city, where ruins and crumbled walls tell a story of devastation, a poignant close-up frames a young girl. Her face is smudged with ash, a silent testament to the chaos around her. Her eyes glistening with a mix of sorrow and resilience, capturing the raw emotion of a world that has lost its innocence to the ravages of conflict.</div>
|
83 |
+
</div>
|
84 |
+
</div>
|
85 |
+
</body>
|
86 |
+
</html>
|
87 |
+
|
88 |
+
## Model Introduction
|
89 |
+
|
90 |
+
CogVideoX is an open-source version of the video generation model originating
|
91 |
+
from [QingYing](https://chatglm.cn/video?lang=en?fr=osm_cogvideo). The table below displays the list of video generation
|
92 |
+
models we currently offer, along with their foundational information.
|
93 |
+
|
94 |
+
<table style="border-collapse: collapse; width: 100%;">
|
95 |
+
<tr>
|
96 |
+
<th style="text-align: center;">Model Name</th>
|
97 |
+
<th style="text-align: center;">CogVideoX-2B (This Repository)</th>
|
98 |
+
<th style="text-align: center;">CogVideoX-5B</th>
|
99 |
+
</tr>
|
100 |
+
<tr>
|
101 |
+
<td style="text-align: center;">Model Description</td>
|
102 |
+
<td style="text-align: center;">Entry-level model, balancing compatibility. Low cost for running and secondary development.</td>
|
103 |
+
<td style="text-align: center;">Larger model with higher video generation quality and better visual effects.</td>
|
104 |
+
</tr>
|
105 |
+
<tr>
|
106 |
+
<td style="text-align: center;">Inference Precision</td>
|
107 |
+
<td style="text-align: center;"><b>FP16* (Recommended)</b>, BF16, FP32, FP8*, INT8, no support for INT4</td>
|
108 |
+
<td style="text-align: center;"><b>BF16 (Recommended)</b>, FP16, FP32, FP8*, INT8, no support for INT4</td>
|
109 |
+
</tr>
|
110 |
+
<tr>
|
111 |
+
<td style="text-align: center;">Single GPU VRAM Consumption<br></td>
|
112 |
+
<td style="text-align: center;"><a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> FP16: 18GB <br><b>diffusers FP16: starting from 4GB*</b><br><b>diffusers INT8(torchao): starting from 3.6GB*</b></td>
|
113 |
+
<td style="text-align: center;"><a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> BF16: 26GB <br><b>diffusers BF16: starting from 5GB*</b><br><b>diffusers INT8(torchao): starting from 4.4GB*</b></td>
|
114 |
+
</tr>
|
115 |
+
<tr>
|
116 |
+
<td style="text-align: center;">Multi-GPU Inference VRAM Consumption</td>
|
117 |
+
<td style="text-align: center;"><b>FP16: 10GB* using diffusers</b></td>
|
118 |
+
<td style="text-align: center;"><b>BF16: 15GB* using diffusers</b></td>
|
119 |
+
</tr>
|
120 |
+
<tr>
|
121 |
+
<td style="text-align: center;">Inference Speed<br>(Step = 50, FP/BF16)</td>
|
122 |
+
<td style="text-align: center;">Single A100: ~90 seconds<br>Single H100: ~45 seconds</td>
|
123 |
+
<td style="text-align: center;">Single A100: ~180 seconds<br>Single H100: ~90 seconds</td>
|
124 |
+
</tr>
|
125 |
+
<tr>
|
126 |
+
<td style="text-align: center;">Fine-tuning Precision</td>
|
127 |
+
<td style="text-align: center;"><b>FP16</b></td>
|
128 |
+
<td style="text-align: center;"><b>BF16</b></td>
|
129 |
+
</tr>
|
130 |
+
<tr>
|
131 |
+
<td style="text-align: center;">Fine-tuning VRAM Consumption (per GPU)</td>
|
132 |
+
<td style="text-align: center;">47 GB (bs=1, LORA)<br> 61 GB (bs=2, LORA)<br> 62GB (bs=1, SFT)</td>
|
133 |
+
<td style="text-align: center;">63 GB (bs=1, LORA)<br> 80 GB (bs=2, LORA)<br> 75GB (bs=1, SFT)</td>
|
134 |
+
</tr>
|
135 |
+
<tr>
|
136 |
+
<td style="text-align: center;">Prompt Language</td>
|
137 |
+
<td colspan="2" style="text-align: center;">English*</td>
|
138 |
+
</tr>
|
139 |
+
<tr>
|
140 |
+
<td style="text-align: center;">Prompt Length Limit</td>
|
141 |
+
<td colspan="2" style="text-align: center;">226 Tokens</td>
|
142 |
+
</tr>
|
143 |
+
<tr>
|
144 |
+
<td style="text-align: center;">Video Length</td>
|
145 |
+
<td colspan="2" style="text-align: center;">6 Seconds</td>
|
146 |
+
</tr>
|
147 |
+
<tr>
|
148 |
+
<td style="text-align: center;">Frame Rate</td>
|
149 |
+
<td colspan="2" style="text-align: center;">8 Frames per Second</td>
|
150 |
+
</tr>
|
151 |
+
<tr>
|
152 |
+
<td style="text-align: center;">Video Resolution</td>
|
153 |
+
<td colspan="2" style="text-align: center;">720 x 480, no support for other resolutions (including fine-tuning)</td>
|
154 |
+
</tr>
|
155 |
+
<tr>
|
156 |
+
<td style="text-align: center;">Positional Encoding</td>
|
157 |
+
<td style="text-align: center;">3d_sincos_pos_embed</td>
|
158 |
+
<td style="text-align: center;">3d_rope_pos_embed</td>
|
159 |
+
</tr>
|
160 |
+
</table>
|
161 |
+
|
162 |
+
**Data Explanation**
|
163 |
+
|
164 |
+
+ When testing using the `diffusers` library, all optimizations provided by the `diffusers` library were enabled. This
|
165 |
+
solution has not been tested for actual VRAM/memory usage on devices other than **NVIDIA A100 / H100**. Generally,
|
166 |
+
this solution can be adapted to all devices with **NVIDIA Ampere architecture** and above. If the optimizations are
|
167 |
+
disabled, VRAM usage will increase significantly, with peak VRAM usage being about 3 times higher than the table
|
168 |
+
shows. However, speed will increase by 3-4 times. You can selectively disable some optimizations, including:
|
169 |
+
|
170 |
+
```
|
171 |
+
pipe.enable_model_cpu_offload()
|
172 |
+
pipe.enable_sequential_cpu_offload()
|
173 |
+
pipe.vae.enable_slicing()
|
174 |
+
pipe.vae.enable_tiling()
|
175 |
+
```
|
176 |
+
|
177 |
+
+ When performing multi-GPU inference, the `enable_model_cpu_offload()` optimization needs to be disabled.
|
178 |
+
+ Using INT8 models will reduce inference speed. This is to ensure that GPUs with lower VRAM can perform inference
|
179 |
+
normally while maintaining minimal video quality loss, though inference speed will decrease significantly.
|
180 |
+
+ The 2B model is trained with `FP16` precision, and the 5B model is trained with `BF16` precision. We recommend using
|
181 |
+
the precision the model was trained with for inference.
|
182 |
+
+ [PytorchAO](https://github.com/pytorch/ao) and [Optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be
|
183 |
+
used to quantize the text encoder, Transformer, and VAE modules to reduce CogVideoX's memory requirements. This makes
|
184 |
+
it possible to run the model on a free T4 Colab or GPUs with smaller VRAM! It is also worth noting that TorchAO
|
185 |
+
quantization is fully compatible with `torch.compile`, which can significantly improve inference speed. `FP8`
|
186 |
+
precision must be used on devices with `NVIDIA H100` or above, which requires installing
|
187 |
+
the `torch`, `torchao`, `diffusers`, and `accelerate` Python packages from source. `CUDA 12.4` is recommended.
|
188 |
+
+ The inference speed test also used the above VRAM optimization scheme. Without VRAM optimization, inference speed
|
189 |
+
increases by about 10%. Only the `diffusers` version of the model supports quantization.
|
190 |
+
+ The model only supports English input; other languages can be translated into English during refinement by a large
|
191 |
+
model.
|
192 |
+
|
193 |
+
**Note**
|
194 |
+
|
195 |
+
+ Using [SAT](https://github.com/THUDM/SwissArmyTransformer) for inference and fine-tuning of SAT version
|
196 |
+
models. Feel free to visit our GitHub for more information.
|
197 |
+
|
198 |
+
## Quick Start 🤗
|
199 |
+
|
200 |
+
This model supports deployment using the huggingface diffusers library. You can deploy it by following these steps.
|
201 |
+
|
202 |
+
**We recommend that you visit our [GitHub](https://github.com/THUDM/CogVideo) and check out the relevant prompt
|
203 |
+
optimizations and conversions to get a better experience.**
|
204 |
+
|
205 |
+
1. Install the required dependencies
|
206 |
+
|
207 |
+
```shell
|
208 |
+
# diffusers>=0.30.1
|
209 |
+
# transformers>=0.44.0
|
210 |
+
# accelerate>=0.33.0 (suggest install from source)
|
211 |
+
# imageio-ffmpeg>=0.5.1
|
212 |
+
pip install --upgrade transformers accelerate diffusers imageio-ffmpeg
|
213 |
+
```
|
214 |
+
|
215 |
+
2. Run the code
|
216 |
+
|
217 |
+
```python
|
218 |
+
import torch
|
219 |
+
from diffusers import CogVideoXPipeline
|
220 |
+
from diffusers.utils import export_to_video
|
221 |
+
|
222 |
+
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
|
223 |
+
|
224 |
+
pipe = CogVideoXPipeline.from_pretrained(
|
225 |
+
"THUDM/CogVideoX-2b",
|
226 |
+
torch_dtype=torch.float16
|
227 |
+
)
|
228 |
+
|
229 |
+
pipe.enable_model_cpu_offload()
|
230 |
+
pipe.enable_sequential_cpu_offload()
|
231 |
+
pipe.vae.enable_slicing()
|
232 |
+
pipe.vae.enable_tiling()
|
233 |
+
video = pipe(
|
234 |
+
prompt=prompt,
|
235 |
+
num_videos_per_prompt=1,
|
236 |
+
num_inference_steps=50,
|
237 |
+
num_frames=49,
|
238 |
+
guidance_scale=6,
|
239 |
+
generator=torch.Generator(device="cuda").manual_seed(42),
|
240 |
+
).frames[0]
|
241 |
+
|
242 |
+
export_to_video(video, "output.mp4", fps=8)
|
243 |
+
```
|
244 |
+
|
245 |
+
## Quantized Inference
|
246 |
+
|
247 |
+
[PytorchAO](https://github.com/pytorch/ao) and [Optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be
|
248 |
+
used to quantize the Text Encoder, Transformer and VAE modules to lower the memory requirement of CogVideoX. This makes
|
249 |
+
it possible to run the model on free-tier T4 Colab or smaller VRAM GPUs as well! It is also worth noting that TorchAO
|
250 |
+
quantization is fully compatible with `torch.compile`, which allows for much faster inference speed.
|
251 |
+
|
252 |
+
```diff
|
253 |
+
# To get started, PytorchAO needs to be installed from the GitHub source and PyTorch Nightly.
|
254 |
+
# Source and nightly installation is only required until next release.
|
255 |
+
|
256 |
+
import torch
|
257 |
+
from diffusers import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXPipeline
|
258 |
+
from diffusers.utils import export_to_video
|
259 |
+
+ from transformers import T5EncoderModel
|
260 |
+
+ from torchao.quantization import quantize_, int8_weight_only, int8_dynamic_activation_int8_weight
|
261 |
+
|
262 |
+
+ quantization = int8_weight_only
|
263 |
+
|
264 |
+
+ text_encoder = T5EncoderModel.from_pretrained("THUDM/CogVideoX-5b", subfolder="text_encoder", torch_dtype=torch.bfloat16)
|
265 |
+
+ quantize_(text_encoder, quantization())
|
266 |
+
|
267 |
+
+ transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16)
|
268 |
+
+ quantize_(transformer, quantization())
|
269 |
+
|
270 |
+
+ vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-2b", subfolder="vae", torch_dtype=torch.bfloat16)
|
271 |
+
+ quantize_(vae, quantization())
|
272 |
+
|
273 |
+
# Create pipeline and run inference
|
274 |
+
pipe = CogVideoXPipeline.from_pretrained(
|
275 |
+
"THUDM/CogVideoX-2b",
|
276 |
+
+ text_encoder=text_encoder,
|
277 |
+
+ transformer=transformer,
|
278 |
+
+ vae=vae,
|
279 |
+
torch_dtype=torch.bfloat16,
|
280 |
+
)
|
281 |
+
pipe.enable_model_cpu_offload()
|
282 |
+
pipe.vae.enable_tiling()
|
283 |
+
|
284 |
+
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
|
285 |
+
|
286 |
+
video = pipe(
|
287 |
+
prompt=prompt,
|
288 |
+
num_videos_per_prompt=1,
|
289 |
+
num_inference_steps=50,
|
290 |
+
num_frames=49,
|
291 |
+
guidance_scale=6,
|
292 |
+
generator=torch.Generator(device="cuda").manual_seed(42),
|
293 |
+
).frames[0]
|
294 |
+
|
295 |
+
export_to_video(video, "output.mp4", fps=8)
|
296 |
+
```
|
297 |
+
|
298 |
+
Additionally, the models can be serialized and stored in a quantized datatype to save disk space when using PytorchAO.
|
299 |
+
Find examples and benchmarks at these links:
|
300 |
+
|
301 |
+
- [torchao](https://gist.github.com/a-r-r-o-w/4d9732d17412888c885480c6521a9897)
|
302 |
+
- [quanto](https://gist.github.com/a-r-r-o-w/31be62828b00a9292821b85c1017effa)
|
303 |
+
|
304 |
+
## Explore the Model
|
305 |
+
|
306 |
+
Welcome to our [github](https://github.com/THUDM/CogVideo), where you will find:
|
307 |
+
|
308 |
+
1. More detailed technical details and code explanation.
|
309 |
+
2. Optimization and conversion of prompt words.
|
310 |
+
3. Reasoning and fine-tuning of SAT version models, and even pre-release.
|
311 |
+
4. Project update log dynamics, more interactive opportunities.
|
312 |
+
5. CogVideoX toolchain to help you better use the model.
|
313 |
+
6. INT8 model inference code support.
|
314 |
+
|
315 |
+
## Model License
|
316 |
+
|
317 |
+
The CogVideoX-2B model (including its corresponding Transformers module and VAE module) is released under
|
318 |
+
the [Apache 2.0 License](LICENSE).
|
319 |
+
|
320 |
+
The CogVideoX-5B model (Transformers module) is released under
|
321 |
+
the [CogVideoX LICENSE](https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE).
|
322 |
+
|
323 |
+
## Citation
|
324 |
+
|
325 |
+
```
|
326 |
+
@article{yang2024cogvideox,
|
327 |
+
title={CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer},
|
328 |
+
author={Yang, Zhuoyi and Teng, Jiayan and Zheng, Wendi and Ding, Ming and Huang, Shiyu and Xu, Jiazheng and Yang, Yuanming and Hong, Wenyi and Zhang, Xiaohan and Feng, Guanyu and others},
|
329 |
+
journal={arXiv preprint arXiv:2408.06072},
|
330 |
+
year={2024}
|
331 |
+
}
|
332 |
+
```
|
README_zh.md
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CogVideoX-2B
|
2 |
+
|
3 |
+
<p style="text-align: center;">
|
4 |
+
<div align="center">
|
5 |
+
<img src=https://github.com/THUDM/CogVideo/raw/main/resources/logo.svg width="50%"/>
|
6 |
+
</div>
|
7 |
+
<p align="center">
|
8 |
+
<a href="https://huggingface.co/THUDM/CogVideoX-2b/blob/main/README.md">📄 Read in English</a> |
|
9 |
+
<a href="https://huggingface.co/spaces/THUDM/CogVideoX-2B-Space">🤗 Huggingface Space</a> |
|
10 |
+
<a href="https://github.com/THUDM/CogVideo">🌐 Github </a> |
|
11 |
+
<a href="https://arxiv.org/pdf/2408.06072">📜 arxiv </a>
|
12 |
+
</p>
|
13 |
+
<p align="center">
|
14 |
+
📍 前往<a href="https://chatglm.cn/video?fr=osm_cogvideox"> 清影</a> 和 <a href="https://open.bigmodel.cn/?utm_campaign=open&_channel_track_key=OWTVNma9"> API平台</a> 体验商业版视频生成模型
|
15 |
+
</p>
|
16 |
+
|
17 |
+
## 作品案例
|
18 |
+
|
19 |
+
<!DOCTYPE html>
|
20 |
+
<html lang="en">
|
21 |
+
<head>
|
22 |
+
<meta charset="UTF-8">
|
23 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
24 |
+
<title>Video Gallery with Captions</title>
|
25 |
+
<style>
|
26 |
+
.video-container {
|
27 |
+
display: flex;
|
28 |
+
flex-wrap: wrap;
|
29 |
+
justify-content: space-around;
|
30 |
+
}
|
31 |
+
.video-item {
|
32 |
+
width: 45%;
|
33 |
+
margin-bottom: 20px;
|
34 |
+
transition: transform 0.3s;
|
35 |
+
}
|
36 |
+
.video-item:hover {
|
37 |
+
transform: scale(1.1);
|
38 |
+
}
|
39 |
+
.caption {
|
40 |
+
text-align: center;
|
41 |
+
margin-top: 10px;
|
42 |
+
font-size: 11px;
|
43 |
+
}
|
44 |
+
</style>
|
45 |
+
</head>
|
46 |
+
<body>
|
47 |
+
<div class="video-container">
|
48 |
+
<div class="video-item">
|
49 |
+
<video width="100%" controls>
|
50 |
+
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/1.mp4" type="video/mp4">
|
51 |
+
</video>
|
52 |
+
<div class="caption">A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting.</div>
|
53 |
+
</div>
|
54 |
+
<div class="video-item">
|
55 |
+
<video width="100%" controls>
|
56 |
+
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/2.mp4" type="video/mp4">
|
57 |
+
</video>
|
58 |
+
<div class="caption">The camera follows behind a white vintage SUV with a black roof rack as it speeds up a steep dirt road surrounded by pine trees on a steep mountain slope, dust kicks up from it’s tires, the sunlight shines on the SUV as it speeds along the dirt road, casting a warm glow over the scene. The dirt road curves gently into the distance, with no other cars or vehicles in sight. The trees on either side of the road are redwoods, with patches of greenery scattered throughout. The car is seen from the rear following the curve with ease, making it seem as if it is on a rugged drive through the rugged terrain. The dirt road itself is surrounded by steep hills and mountains, with a clear blue sky above with wispy clouds.</div>
|
59 |
+
</div>
|
60 |
+
<div class="video-item">
|
61 |
+
<video width="100%" controls>
|
62 |
+
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/3.mp4" type="video/mp4">
|
63 |
+
</video>
|
64 |
+
<div class="caption">A street artist, clad in a worn-out denim jacket and a colorful bandana, stands before a vast concrete wall in the heart, holding a can of spray paint, spray-painting a colorful bird on a mottled wall.</div>
|
65 |
+
</div>
|
66 |
+
<div class="video-item">
|
67 |
+
<video width="100%" controls>
|
68 |
+
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/4.mp4" type="video/mp4">
|
69 |
+
</video>
|
70 |
+
<div class="caption"> In the haunting backdrop of a war-torn city, where ruins and crumbled walls tell a story of devastation, a poignant close-up frames a young girl. Her face is smudged with ash, a silent testament to the chaos around her. Her eyes glistening with a mix of sorrow and resilience, capturing the raw emotion of a world that has lost its innocence to the ravages of conflict.</div>
|
71 |
+
</div>
|
72 |
+
</div>
|
73 |
+
</body>
|
74 |
+
</html>
|
75 |
+
|
76 |
+
## 模型介绍
|
77 |
+
|
78 |
+
CogVideoX是 [清影](https://chatglm.cn/video?fr=osm_cogvideo) 同源的开源版本视频生成模型。下表展示目前我们提供的视频生成模型列表,以及相关基础信息。
|
79 |
+
|
80 |
+
<table style="border-collapse: collapse; width: 100%;">
|
81 |
+
<tr>
|
82 |
+
<th style="text-align: center;">模型名</th>
|
83 |
+
<th style="text-align: center;">CogVideoX-2B (本仓库)</th>
|
84 |
+
<th style="text-align: center;">CogVideoX-5B </th>
|
85 |
+
</tr>
|
86 |
+
<tr>
|
87 |
+
<td style="text-align: center;">模型介绍</td>
|
88 |
+
<td style="text-align: center;">入门级模型,兼顾兼容性��运行,二次开发成本低。</td>
|
89 |
+
<td style="text-align: center;">视频生成质量更高,视觉效果更好的更大尺寸模型。</td>
|
90 |
+
</tr>
|
91 |
+
<tr>
|
92 |
+
<td style="text-align: center;">推理精度</td>
|
93 |
+
<td style="text-align: center;"><b>FP16*(推荐)</b>, BF16, FP32,FP8*,INT8,不支持INT4</td>
|
94 |
+
<td style="text-align: center;"><b>BF16(推荐)</b>, FP16, FP32,FP8*,INT8,不支持INT4</td>
|
95 |
+
</tr>
|
96 |
+
<tr>
|
97 |
+
<td style="text-align: center;">单GPU显存消耗<br></td>
|
98 |
+
<td style="text-align: center;"><a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> FP16: 18GB <br><b>diffusers FP16: 4GB起* </b><br><b>diffusers INT8(torchao): 3.6G起*</b></td>
|
99 |
+
<td style="text-align: center;"><a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> BF16: 26GB <br><b>diffusers BF16 : 5GB起* </b><br><b>diffusers INT8(torchao): 4.4G起* </b></td>
|
100 |
+
</tr>
|
101 |
+
<tr>
|
102 |
+
<td style="text-align: center;">多GPU推理显存消耗</td>
|
103 |
+
<td style="text-align: center;"><b>FP16: 10GB* using diffusers</b><br></td>
|
104 |
+
<td style="text-align: center;"><b>BF16: 15GB* using diffusers</b><br></td>
|
105 |
+
</tr>
|
106 |
+
<tr>
|
107 |
+
<td style="text-align: center;">推理速度<br>(Step = 50, FP/BF16)</td>
|
108 |
+
<td style="text-align: center;">单卡A100: ~90秒<br>单卡H100: ~45秒</td>
|
109 |
+
<td style="text-align: center;">单卡A100: ~180秒<br>单卡H100: ~90秒</td>
|
110 |
+
</tr>
|
111 |
+
<tr>
|
112 |
+
<td style="text-align: center;">微调精度</td>
|
113 |
+
<td style="text-align: center;"><b>FP16</b></td>
|
114 |
+
<td style="text-align: center;"><b>BF16</b></td>
|
115 |
+
</tr>
|
116 |
+
<tr>
|
117 |
+
<td style="text-align: center;">微调显存消耗(每卡)</td>
|
118 |
+
<td style="text-align: center;">47 GB (bs=1, LORA)<br> 61 GB (bs=2, LORA)<br> 62GB (bs=1, SFT)</td>
|
119 |
+
<td style="text-align: center;">63 GB (bs=1, LORA)<br> 80 GB (bs=2, LORA)<br> 75GB (bs=1, SFT)<br></td>
|
120 |
+
</tr>
|
121 |
+
<tr>
|
122 |
+
<td style="text-align: center;">提示词语言</td>
|
123 |
+
<td colspan="2" style="text-align: center;">English*</td>
|
124 |
+
</tr>
|
125 |
+
<tr>
|
126 |
+
<td style="text-align: center;">提示词长度上限</td>
|
127 |
+
<td colspan="2" style="text-align: center;">226 Tokens</td>
|
128 |
+
</tr>
|
129 |
+
<tr>
|
130 |
+
<td style="text-align: center;">视频长度</td>
|
131 |
+
<td colspan="2" style="text-align: center;">6 秒</td>
|
132 |
+
</tr>
|
133 |
+
<tr>
|
134 |
+
<td style="text-align: center;">帧率</td>
|
135 |
+
<td colspan="2" style="text-align: center;">8 帧 / 秒 </td>
|
136 |
+
</tr>
|
137 |
+
<tr>
|
138 |
+
<td style="text-align: center;">视频分辨率</td>
|
139 |
+
<td colspan="2" style="text-align: center;">720 * 480,不支持其他分辨率(含微调)</td>
|
140 |
+
</tr>
|
141 |
+
<tr>
|
142 |
+
<td style="text-align: center;">位置编码</td>
|
143 |
+
<td style="text-align: center;">3d_sincos_pos_embed</td>
|
144 |
+
<td style="text-align: center;">3d_rope_pos_embed<br></td>
|
145 |
+
</tr>
|
146 |
+
</table>
|
147 |
+
|
148 |
+
**数据解释**
|
149 |
+
|
150 |
+
+ 使用 diffusers 库进行测试时,启用了全部`diffusers`库自带的优化,该方案未测试在非**NVIDIA A100 / H100** 外的设备上的实际显存 / 内存占用。通常,该方案可以适配于所有 **NVIDIA 安培架构**
|
151 |
+
以上的设备。若关闭优化,显存占用会成倍增加,峰值显存约为表格的3倍。但速度提升3-4倍左右。你可以选择性的关闭部分优化,这些优化包括:
|
152 |
+
```
|
153 |
+
pipe.enable_model_cpu_offload()
|
154 |
+
pipe.enable_sequential_cpu_offload()
|
155 |
+
pipe.vae.enable_slicing()
|
156 |
+
pipe.vae.enable_tiling()
|
157 |
+
```
|
158 |
+
|
159 |
+
+ 多GPU推理时,需要关闭 `enable_model_cpu_offload()` 优化。
|
160 |
+
+ 使用 INT8 模型会导致推理速度降低,此举是为了满足显存较低的显卡能正常推理并保持较少的视频质量损失,推理速度大幅降低。
|
161 |
+
+ 2B 模型采用 `FP16` 精度训练, 5B模型采用 `BF16` 精度训练。我们推荐使用模型训练的精度进行推理。
|
162 |
+
+ [PytorchAO](https://github.com/pytorch/ao) 和 [Optimum-quanto](https://github.com/huggingface/optimum-quanto/)
|
163 |
+
可以用于量化文本编码器、Transformer 和 VAE 模块,以降低 CogVideoX 的内存需求。这使得在免费的 T4 Colab 或更小显存的 GPU
|
164 |
+
上运行模型成为可能!同样值得注意的是,TorchAO 量化完全兼容 `torch.compile`,这可以显著提高推理速度。在 `NVIDIA H100`
|
165 |
+
及以上设备上必须使用 `FP8` 精度,这需要源码安装 `torch`、`torchao`、`diffusers` 和 `accelerate` Python
|
166 |
+
包。建议使用 `CUDA 12.4`。
|
167 |
+
+ 推理速度测试同样采用了上述显存优化方案,不采用显存优化的情况下,推理速度提升约10%。 只有`diffusers`版本模型支持量化。
|
168 |
+
+ 模型仅支持英语输入,其他语言可以通过大模型润色时翻译为英语。
|
169 |
+
|
170 |
+
**提醒**
|
171 |
+
|
172 |
+
+ 使用 [SAT](https://github.com/THUDM/SwissArmyTransformer) 推理和微调SAT版本模型。欢迎前往我们的github查看。
|
173 |
+
|
174 |
+
## 快速上手 🤗
|
175 |
+
|
176 |
+
本模型已经支持使用 huggingface 的 diffusers 库进行部署,你可以按照以下步骤进行部署。
|
177 |
+
|
178 |
+
**我们推荐您进入我们的 [github](https://github.com/THUDM/CogVideo) 并查看相关的提示词优化和转换,以获得更���的体验。**
|
179 |
+
|
180 |
+
1. 安装对应的依赖
|
181 |
+
|
182 |
+
```shell
|
183 |
+
# diffusers>=0.30.1
|
184 |
+
# transformers>=0.44.0
|
185 |
+
# accelerate>=0.33.0 (suggest install from source)
|
186 |
+
# imageio-ffmpeg>=0.5.1
|
187 |
+
pip install --upgrade transformers accelerate diffusers imageio-ffmpeg
|
188 |
+
```
|
189 |
+
|
190 |
+
2. 运行代码 (BF16 / FP16)
|
191 |
+
|
192 |
+
```python
|
193 |
+
import torch
|
194 |
+
from diffusers import CogVideoXPipeline
|
195 |
+
from diffusers.utils import export_to_video
|
196 |
+
|
197 |
+
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
|
198 |
+
|
199 |
+
pipe = CogVideoXPipeline.from_pretrained(
|
200 |
+
"THUDM/CogVideoX-2b",
|
201 |
+
torch_dtype=torch.float16
|
202 |
+
)
|
203 |
+
|
204 |
+
pipe.enable_model_cpu_offload()
|
205 |
+
pipe.enable_sequential_cpu_offload()
|
206 |
+
pipe.vae.enable_slicing()
|
207 |
+
pipe.vae.enable_tiling()
|
208 |
+
video = pipe(
|
209 |
+
prompt=prompt,
|
210 |
+
num_videos_per_prompt=1,
|
211 |
+
num_inference_steps=50,
|
212 |
+
num_frames=49,
|
213 |
+
guidance_scale=6,
|
214 |
+
generator=torch.Generator(device="cuda").manual_seed(42),
|
215 |
+
).frames[0]
|
216 |
+
|
217 |
+
export_to_video(video, "output.mp4", fps=8)
|
218 |
+
```
|
219 |
+
|
220 |
+
## Quantized Inference
|
221 |
+
|
222 |
+
[PytorchAO](https://github.com/pytorch/ao) 和 [Optimum-quanto](https://github.com/huggingface/optimum-quanto/)
|
223 |
+
可以用于对文本编码器、Transformer 和 VAE 模块进行量化,从而降低 CogVideoX 的内存需求。这使得在免费的 T4 Colab 或较小 VRAM 的
|
224 |
+
GPU 上运行该模型成为可能!值得注意的是,TorchAO 量化与 `torch.compile` 完全兼容,这可以显著加快推理速度。
|
225 |
+
|
226 |
+
```diff
|
227 |
+
# To get started, PytorchAO needs to be installed from the GitHub source and PyTorch Nightly.
|
228 |
+
# Source and nightly installation is only required until next release.
|
229 |
+
|
230 |
+
import torch
|
231 |
+
from diffusers import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXPipeline
|
232 |
+
from diffusers.utils import export_to_video
|
233 |
+
+ from transformers import T5EncoderModel
|
234 |
+
+ from torchao.quantization import quantize_, int8_weight_only, int8_dynamic_activation_int8_weight
|
235 |
+
|
236 |
+
+ quantization = int8_weight_only
|
237 |
+
|
238 |
+
+ text_encoder = T5EncoderModel.from_pretrained("THUDM/CogVideoX-2b", subfolder="text_encoder", torch_dtype=torch.bfloat16)
|
239 |
+
+ quantize_(text_encoder, quantization())
|
240 |
+
|
241 |
+
+ transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16)
|
242 |
+
+ quantize_(transformer, quantization())
|
243 |
+
|
244 |
+
+ vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-2b", subfolder="vae", torch_dtype=torch.bfloat16)
|
245 |
+
+ quantize_(vae, quantization())
|
246 |
+
|
247 |
+
# Create pipeline and run inference
|
248 |
+
pipe = CogVideoXPipeline.from_pretrained(
|
249 |
+
"THUDM/CogVideoX-2b",
|
250 |
+
+ text_encoder=text_encoder,
|
251 |
+
+ transformer=transformer,
|
252 |
+
+ vae=vae,
|
253 |
+
torch_dtype=torch.bfloat16,
|
254 |
+
)
|
255 |
+
pipe.enable_model_cpu_offload()
|
256 |
+
pipe.vae.enable_tiling()
|
257 |
+
|
258 |
+
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
|
259 |
+
|
260 |
+
video = pipe(
|
261 |
+
prompt=prompt,
|
262 |
+
num_videos_per_prompt=1,
|
263 |
+
num_inference_steps=50,
|
264 |
+
num_frames=49,
|
265 |
+
guidance_scale=6,
|
266 |
+
generator=torch.Generator(device="cuda").manual_seed(42),
|
267 |
+
).frames[0]
|
268 |
+
|
269 |
+
export_to_video(video, "output.mp4", fps=8)
|
270 |
+
```
|
271 |
+
|
272 |
+
此外,这些模型可以通过使用PytorchAO以量化数据类型序列化并存储,从而节省磁盘空间。你可以在以下链接中找到示例和基准测试。
|
273 |
+
|
274 |
+
- [torchao](https://gist.github.com/a-r-r-o-w/4d9732d17412888c885480c6521a9897)
|
275 |
+
- [quanto](https://gist.github.com/a-r-r-o-w/31be62828b00a9292821b85c1017effa)
|
276 |
+
|
277 |
+
## 深入研究
|
278 |
+
|
279 |
+
欢迎进入我们的 [github](https://github.com/THUDM/CogVideo),你将获得:
|
280 |
+
|
281 |
+
1. 更加详细的技术细节介绍和代码解释。
|
282 |
+
2. 提示词的优化和转换。
|
283 |
+
3. SAT版本模型进行推理和微调,甚至预发布。
|
284 |
+
4. 项目更新日志动态,更多互动机会。
|
285 |
+
5. CogVideoX 工具链,帮助您更好的使用模型。
|
286 |
+
6. INT8 模型推理代码。
|
287 |
+
|
288 |
+
## 模型协议
|
289 |
+
|
290 |
+
CogVideoX-2B 模型 (包括其对应的Transformers模块,VAE模块) 根据 [Apache 2.0 License](LICENSE) 许可证发布。
|
291 |
+
|
292 |
+
CogVideoX-5B 模型 (Transformers 模块)
|
293 |
+
根据 [CogVideoX LICENSE](https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE)
|
294 |
+
许可证发布。
|
295 |
+
|
296 |
+
## 引用
|
297 |
+
|
298 |
+
```
|
299 |
+
@article{yang2024cogvideox,
|
300 |
+
title={CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer},
|
301 |
+
author={Yang, Zhuoyi and Teng, Jiayan and Zheng, Wendi and Ding, Ming and Huang, Shiyu and Xu, Jiazheng and Yang, Yuanming and Hong, Wenyi and Zhang, Xiaohan and Feng, Guanyu and others},
|
302 |
+
journal={arXiv preprint arXiv:2408.06072},
|
303 |
+
year={2024}
|
304 |
+
}
|
305 |
+
```
|
model_index.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "CogVideoXPipeline",
|
3 |
+
"_diffusers_version": "0.30.0.dev0",
|
4 |
+
"scheduler": [
|
5 |
+
"diffusers",
|
6 |
+
"CogVideoXDDIMScheduler"
|
7 |
+
],
|
8 |
+
"text_encoder": [
|
9 |
+
"transformers",
|
10 |
+
"T5EncoderModel"
|
11 |
+
],
|
12 |
+
"tokenizer": [
|
13 |
+
"transformers",
|
14 |
+
"T5Tokenizer"
|
15 |
+
],
|
16 |
+
"transformer": [
|
17 |
+
"diffusers",
|
18 |
+
"CogVideoXTransformer3DModel"
|
19 |
+
],
|
20 |
+
"vae": [
|
21 |
+
"diffusers",
|
22 |
+
"AutoencoderKLCogVideoX"
|
23 |
+
]
|
24 |
+
}
|
scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "CogVideoXDDIMScheduler",
|
3 |
+
"_diffusers_version": "0.30.0.dev0",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"clip_sample": false,
|
8 |
+
"clip_sample_range": 1.0,
|
9 |
+
"num_train_timesteps": 1000,
|
10 |
+
"prediction_type": "v_prediction",
|
11 |
+
"rescale_betas_zero_snr": true,
|
12 |
+
"sample_max_value": 1.0,
|
13 |
+
"set_alpha_to_one": true,
|
14 |
+
"snr_shift_scale": 3.0,
|
15 |
+
"steps_offset": 0,
|
16 |
+
"timestep_spacing": "trailing",
|
17 |
+
"trained_betas": null
|
18 |
+
}
|
text_encoder/config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google/t5-v1_1-xxl_1",
|
3 |
+
"architectures": [
|
4 |
+
"T5EncoderModel"
|
5 |
+
],
|
6 |
+
"classifier_dropout": 0.0,
|
7 |
+
"d_ff": 10240,
|
8 |
+
"d_kv": 64,
|
9 |
+
"d_model": 4096,
|
10 |
+
"decoder_start_token_id": 0,
|
11 |
+
"dense_act_fn": "gelu_new",
|
12 |
+
"dropout_rate": 0.1,
|
13 |
+
"eos_token_id": 1,
|
14 |
+
"feed_forward_proj": "gated-gelu",
|
15 |
+
"initializer_factor": 1.0,
|
16 |
+
"is_encoder_decoder": true,
|
17 |
+
"is_gated_act": true,
|
18 |
+
"layer_norm_epsilon": 1e-06,
|
19 |
+
"model_type": "t5",
|
20 |
+
"num_decoder_layers": 24,
|
21 |
+
"num_heads": 64,
|
22 |
+
"num_layers": 24,
|
23 |
+
"output_past": true,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"relative_attention_max_distance": 128,
|
26 |
+
"relative_attention_num_buckets": 32,
|
27 |
+
"tie_word_embeddings": false,
|
28 |
+
"torch_dtype": "float16",
|
29 |
+
"transformers_version": "4.43.2",
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 32128
|
32 |
+
}
|
text_encoder/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f2751ceeb2a96edd693e539dc5d6bba0b8d3814f49a9b3798403a0cec4b2e3d
|
3 |
+
size 4994582104
|
text_encoder/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f63154532130422309532ff56f11945fbea8266c958e3133e8e5aef85c6293c7
|
3 |
+
size 4530066248
|
text_encoder/model.safetensors.index.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 9524621312
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"encoder.block.0.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"encoder.block.0.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"encoder.block.0.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"encoder.block.0.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"encoder.block.0.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"encoder.block.0.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"encoder.block.0.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"encoder.block.0.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"encoder.block.0.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"encoder.block.1.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"encoder.block.1.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"encoder.block.1.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"encoder.block.1.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"encoder.block.1.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"encoder.block.1.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"encoder.block.1.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"encoder.block.1.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"encoder.block.1.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"encoder.block.10.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"encoder.block.10.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"encoder.block.10.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"encoder.block.10.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"encoder.block.10.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"encoder.block.10.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"encoder.block.10.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"encoder.block.10.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"encoder.block.10.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"encoder.block.11.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"encoder.block.11.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"encoder.block.11.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"encoder.block.11.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"encoder.block.11.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"encoder.block.11.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"encoder.block.11.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"encoder.block.11.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"encoder.block.11.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"encoder.block.12.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"encoder.block.12.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
45 |
+
"encoder.block.12.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"encoder.block.12.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"encoder.block.12.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
48 |
+
"encoder.block.12.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
49 |
+
"encoder.block.12.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
50 |
+
"encoder.block.12.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
51 |
+
"encoder.block.12.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
52 |
+
"encoder.block.13.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
53 |
+
"encoder.block.13.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
54 |
+
"encoder.block.13.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
55 |
+
"encoder.block.13.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
56 |
+
"encoder.block.13.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
57 |
+
"encoder.block.13.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
58 |
+
"encoder.block.13.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
59 |
+
"encoder.block.13.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
60 |
+
"encoder.block.13.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
61 |
+
"encoder.block.14.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
62 |
+
"encoder.block.14.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
63 |
+
"encoder.block.14.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
64 |
+
"encoder.block.14.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
65 |
+
"encoder.block.14.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
66 |
+
"encoder.block.14.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
67 |
+
"encoder.block.14.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
68 |
+
"encoder.block.14.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
69 |
+
"encoder.block.14.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
70 |
+
"encoder.block.15.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
71 |
+
"encoder.block.15.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
72 |
+
"encoder.block.15.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
73 |
+
"encoder.block.15.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
74 |
+
"encoder.block.15.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
75 |
+
"encoder.block.15.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
76 |
+
"encoder.block.15.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
77 |
+
"encoder.block.15.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
78 |
+
"encoder.block.15.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
79 |
+
"encoder.block.16.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
80 |
+
"encoder.block.16.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
81 |
+
"encoder.block.16.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
82 |
+
"encoder.block.16.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
83 |
+
"encoder.block.16.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
84 |
+
"encoder.block.16.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
85 |
+
"encoder.block.16.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
86 |
+
"encoder.block.16.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
87 |
+
"encoder.block.16.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
88 |
+
"encoder.block.17.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
89 |
+
"encoder.block.17.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
90 |
+
"encoder.block.17.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
91 |
+
"encoder.block.17.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
92 |
+
"encoder.block.17.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
93 |
+
"encoder.block.17.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
94 |
+
"encoder.block.17.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
95 |
+
"encoder.block.17.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
96 |
+
"encoder.block.17.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
97 |
+
"encoder.block.18.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
98 |
+
"encoder.block.18.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
99 |
+
"encoder.block.18.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
100 |
+
"encoder.block.18.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
101 |
+
"encoder.block.18.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
102 |
+
"encoder.block.18.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
103 |
+
"encoder.block.18.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
104 |
+
"encoder.block.18.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
105 |
+
"encoder.block.18.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
106 |
+
"encoder.block.19.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
107 |
+
"encoder.block.19.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
108 |
+
"encoder.block.19.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
109 |
+
"encoder.block.19.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
110 |
+
"encoder.block.19.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
111 |
+
"encoder.block.19.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
112 |
+
"encoder.block.19.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
113 |
+
"encoder.block.19.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
114 |
+
"encoder.block.19.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
115 |
+
"encoder.block.2.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"encoder.block.2.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"encoder.block.2.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"encoder.block.2.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"encoder.block.2.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"encoder.block.2.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"encoder.block.2.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"encoder.block.2.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"encoder.block.2.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"encoder.block.20.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
125 |
+
"encoder.block.20.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
126 |
+
"encoder.block.20.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
127 |
+
"encoder.block.20.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
128 |
+
"encoder.block.20.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
129 |
+
"encoder.block.20.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
130 |
+
"encoder.block.20.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
131 |
+
"encoder.block.20.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
132 |
+
"encoder.block.20.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
133 |
+
"encoder.block.21.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
134 |
+
"encoder.block.21.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
135 |
+
"encoder.block.21.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
136 |
+
"encoder.block.21.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
137 |
+
"encoder.block.21.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
138 |
+
"encoder.block.21.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
139 |
+
"encoder.block.21.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
140 |
+
"encoder.block.21.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
141 |
+
"encoder.block.21.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
142 |
+
"encoder.block.22.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
143 |
+
"encoder.block.22.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
144 |
+
"encoder.block.22.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
145 |
+
"encoder.block.22.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
146 |
+
"encoder.block.22.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
147 |
+
"encoder.block.22.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
148 |
+
"encoder.block.22.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
149 |
+
"encoder.block.22.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
150 |
+
"encoder.block.22.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
151 |
+
"encoder.block.23.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
152 |
+
"encoder.block.23.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
153 |
+
"encoder.block.23.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
154 |
+
"encoder.block.23.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
155 |
+
"encoder.block.23.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
156 |
+
"encoder.block.23.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
157 |
+
"encoder.block.23.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
158 |
+
"encoder.block.23.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
159 |
+
"encoder.block.23.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
160 |
+
"encoder.block.3.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"encoder.block.3.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"encoder.block.3.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"encoder.block.3.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"encoder.block.3.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"encoder.block.3.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"encoder.block.3.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"encoder.block.3.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"encoder.block.3.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"encoder.block.4.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"encoder.block.4.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"encoder.block.4.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"encoder.block.4.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"encoder.block.4.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"encoder.block.4.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"encoder.block.4.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"encoder.block.4.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"encoder.block.4.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"encoder.block.5.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"encoder.block.5.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"encoder.block.5.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"encoder.block.5.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"encoder.block.5.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"encoder.block.5.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"encoder.block.5.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"encoder.block.5.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"encoder.block.5.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"encoder.block.6.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"encoder.block.6.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"encoder.block.6.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"encoder.block.6.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"encoder.block.6.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"encoder.block.6.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"encoder.block.6.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"encoder.block.6.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"encoder.block.6.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"encoder.block.7.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"encoder.block.7.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"encoder.block.7.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"encoder.block.7.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"encoder.block.7.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"encoder.block.7.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"encoder.block.7.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"encoder.block.7.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"encoder.block.7.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"encoder.block.8.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"encoder.block.8.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"encoder.block.8.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"encoder.block.8.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"encoder.block.8.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"encoder.block.8.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"encoder.block.8.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"encoder.block.8.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"encoder.block.8.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"encoder.block.9.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"encoder.block.9.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"encoder.block.9.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"encoder.block.9.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"encoder.block.9.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"encoder.block.9.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"encoder.block.9.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"encoder.block.9.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"encoder.block.9.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"encoder.final_layer_norm.weight": "model-00002-of-00002.safetensors",
|
224 |
+
"shared.weight": "model-00001-of-00002.safetensors"
|
225 |
+
}
|
226 |
+
}
|
tokenizer/added_tokens.json
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<extra_id_0>": 32099,
|
3 |
+
"<extra_id_10>": 32089,
|
4 |
+
"<extra_id_11>": 32088,
|
5 |
+
"<extra_id_12>": 32087,
|
6 |
+
"<extra_id_13>": 32086,
|
7 |
+
"<extra_id_14>": 32085,
|
8 |
+
"<extra_id_15>": 32084,
|
9 |
+
"<extra_id_16>": 32083,
|
10 |
+
"<extra_id_17>": 32082,
|
11 |
+
"<extra_id_18>": 32081,
|
12 |
+
"<extra_id_19>": 32080,
|
13 |
+
"<extra_id_1>": 32098,
|
14 |
+
"<extra_id_20>": 32079,
|
15 |
+
"<extra_id_21>": 32078,
|
16 |
+
"<extra_id_22>": 32077,
|
17 |
+
"<extra_id_23>": 32076,
|
18 |
+
"<extra_id_24>": 32075,
|
19 |
+
"<extra_id_25>": 32074,
|
20 |
+
"<extra_id_26>": 32073,
|
21 |
+
"<extra_id_27>": 32072,
|
22 |
+
"<extra_id_28>": 32071,
|
23 |
+
"<extra_id_29>": 32070,
|
24 |
+
"<extra_id_2>": 32097,
|
25 |
+
"<extra_id_30>": 32069,
|
26 |
+
"<extra_id_31>": 32068,
|
27 |
+
"<extra_id_32>": 32067,
|
28 |
+
"<extra_id_33>": 32066,
|
29 |
+
"<extra_id_34>": 32065,
|
30 |
+
"<extra_id_35>": 32064,
|
31 |
+
"<extra_id_36>": 32063,
|
32 |
+
"<extra_id_37>": 32062,
|
33 |
+
"<extra_id_38>": 32061,
|
34 |
+
"<extra_id_39>": 32060,
|
35 |
+
"<extra_id_3>": 32096,
|
36 |
+
"<extra_id_40>": 32059,
|
37 |
+
"<extra_id_41>": 32058,
|
38 |
+
"<extra_id_42>": 32057,
|
39 |
+
"<extra_id_43>": 32056,
|
40 |
+
"<extra_id_44>": 32055,
|
41 |
+
"<extra_id_45>": 32054,
|
42 |
+
"<extra_id_46>": 32053,
|
43 |
+
"<extra_id_47>": 32052,
|
44 |
+
"<extra_id_48>": 32051,
|
45 |
+
"<extra_id_49>": 32050,
|
46 |
+
"<extra_id_4>": 32095,
|
47 |
+
"<extra_id_50>": 32049,
|
48 |
+
"<extra_id_51>": 32048,
|
49 |
+
"<extra_id_52>": 32047,
|
50 |
+
"<extra_id_53>": 32046,
|
51 |
+
"<extra_id_54>": 32045,
|
52 |
+
"<extra_id_55>": 32044,
|
53 |
+
"<extra_id_56>": 32043,
|
54 |
+
"<extra_id_57>": 32042,
|
55 |
+
"<extra_id_58>": 32041,
|
56 |
+
"<extra_id_59>": 32040,
|
57 |
+
"<extra_id_5>": 32094,
|
58 |
+
"<extra_id_60>": 32039,
|
59 |
+
"<extra_id_61>": 32038,
|
60 |
+
"<extra_id_62>": 32037,
|
61 |
+
"<extra_id_63>": 32036,
|
62 |
+
"<extra_id_64>": 32035,
|
63 |
+
"<extra_id_65>": 32034,
|
64 |
+
"<extra_id_66>": 32033,
|
65 |
+
"<extra_id_67>": 32032,
|
66 |
+
"<extra_id_68>": 32031,
|
67 |
+
"<extra_id_69>": 32030,
|
68 |
+
"<extra_id_6>": 32093,
|
69 |
+
"<extra_id_70>": 32029,
|
70 |
+
"<extra_id_71>": 32028,
|
71 |
+
"<extra_id_72>": 32027,
|
72 |
+
"<extra_id_73>": 32026,
|
73 |
+
"<extra_id_74>": 32025,
|
74 |
+
"<extra_id_75>": 32024,
|
75 |
+
"<extra_id_76>": 32023,
|
76 |
+
"<extra_id_77>": 32022,
|
77 |
+
"<extra_id_78>": 32021,
|
78 |
+
"<extra_id_79>": 32020,
|
79 |
+
"<extra_id_7>": 32092,
|
80 |
+
"<extra_id_80>": 32019,
|
81 |
+
"<extra_id_81>": 32018,
|
82 |
+
"<extra_id_82>": 32017,
|
83 |
+
"<extra_id_83>": 32016,
|
84 |
+
"<extra_id_84>": 32015,
|
85 |
+
"<extra_id_85>": 32014,
|
86 |
+
"<extra_id_86>": 32013,
|
87 |
+
"<extra_id_87>": 32012,
|
88 |
+
"<extra_id_88>": 32011,
|
89 |
+
"<extra_id_89>": 32010,
|
90 |
+
"<extra_id_8>": 32091,
|
91 |
+
"<extra_id_90>": 32009,
|
92 |
+
"<extra_id_91>": 32008,
|
93 |
+
"<extra_id_92>": 32007,
|
94 |
+
"<extra_id_93>": 32006,
|
95 |
+
"<extra_id_94>": 32005,
|
96 |
+
"<extra_id_95>": 32004,
|
97 |
+
"<extra_id_96>": 32003,
|
98 |
+
"<extra_id_97>": 32002,
|
99 |
+
"<extra_id_98>": 32001,
|
100 |
+
"<extra_id_99>": 32000,
|
101 |
+
"<extra_id_9>": 32090
|
102 |
+
}
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<extra_id_0>",
|
4 |
+
"<extra_id_1>",
|
5 |
+
"<extra_id_2>",
|
6 |
+
"<extra_id_3>",
|
7 |
+
"<extra_id_4>",
|
8 |
+
"<extra_id_5>",
|
9 |
+
"<extra_id_6>",
|
10 |
+
"<extra_id_7>",
|
11 |
+
"<extra_id_8>",
|
12 |
+
"<extra_id_9>",
|
13 |
+
"<extra_id_10>",
|
14 |
+
"<extra_id_11>",
|
15 |
+
"<extra_id_12>",
|
16 |
+
"<extra_id_13>",
|
17 |
+
"<extra_id_14>",
|
18 |
+
"<extra_id_15>",
|
19 |
+
"<extra_id_16>",
|
20 |
+
"<extra_id_17>",
|
21 |
+
"<extra_id_18>",
|
22 |
+
"<extra_id_19>",
|
23 |
+
"<extra_id_20>",
|
24 |
+
"<extra_id_21>",
|
25 |
+
"<extra_id_22>",
|
26 |
+
"<extra_id_23>",
|
27 |
+
"<extra_id_24>",
|
28 |
+
"<extra_id_25>",
|
29 |
+
"<extra_id_26>",
|
30 |
+
"<extra_id_27>",
|
31 |
+
"<extra_id_28>",
|
32 |
+
"<extra_id_29>",
|
33 |
+
"<extra_id_30>",
|
34 |
+
"<extra_id_31>",
|
35 |
+
"<extra_id_32>",
|
36 |
+
"<extra_id_33>",
|
37 |
+
"<extra_id_34>",
|
38 |
+
"<extra_id_35>",
|
39 |
+
"<extra_id_36>",
|
40 |
+
"<extra_id_37>",
|
41 |
+
"<extra_id_38>",
|
42 |
+
"<extra_id_39>",
|
43 |
+
"<extra_id_40>",
|
44 |
+
"<extra_id_41>",
|
45 |
+
"<extra_id_42>",
|
46 |
+
"<extra_id_43>",
|
47 |
+
"<extra_id_44>",
|
48 |
+
"<extra_id_45>",
|
49 |
+
"<extra_id_46>",
|
50 |
+
"<extra_id_47>",
|
51 |
+
"<extra_id_48>",
|
52 |
+
"<extra_id_49>",
|
53 |
+
"<extra_id_50>",
|
54 |
+
"<extra_id_51>",
|
55 |
+
"<extra_id_52>",
|
56 |
+
"<extra_id_53>",
|
57 |
+
"<extra_id_54>",
|
58 |
+
"<extra_id_55>",
|
59 |
+
"<extra_id_56>",
|
60 |
+
"<extra_id_57>",
|
61 |
+
"<extra_id_58>",
|
62 |
+
"<extra_id_59>",
|
63 |
+
"<extra_id_60>",
|
64 |
+
"<extra_id_61>",
|
65 |
+
"<extra_id_62>",
|
66 |
+
"<extra_id_63>",
|
67 |
+
"<extra_id_64>",
|
68 |
+
"<extra_id_65>",
|
69 |
+
"<extra_id_66>",
|
70 |
+
"<extra_id_67>",
|
71 |
+
"<extra_id_68>",
|
72 |
+
"<extra_id_69>",
|
73 |
+
"<extra_id_70>",
|
74 |
+
"<extra_id_71>",
|
75 |
+
"<extra_id_72>",
|
76 |
+
"<extra_id_73>",
|
77 |
+
"<extra_id_74>",
|
78 |
+
"<extra_id_75>",
|
79 |
+
"<extra_id_76>",
|
80 |
+
"<extra_id_77>",
|
81 |
+
"<extra_id_78>",
|
82 |
+
"<extra_id_79>",
|
83 |
+
"<extra_id_80>",
|
84 |
+
"<extra_id_81>",
|
85 |
+
"<extra_id_82>",
|
86 |
+
"<extra_id_83>",
|
87 |
+
"<extra_id_84>",
|
88 |
+
"<extra_id_85>",
|
89 |
+
"<extra_id_86>",
|
90 |
+
"<extra_id_87>",
|
91 |
+
"<extra_id_88>",
|
92 |
+
"<extra_id_89>",
|
93 |
+
"<extra_id_90>",
|
94 |
+
"<extra_id_91>",
|
95 |
+
"<extra_id_92>",
|
96 |
+
"<extra_id_93>",
|
97 |
+
"<extra_id_94>",
|
98 |
+
"<extra_id_95>",
|
99 |
+
"<extra_id_96>",
|
100 |
+
"<extra_id_97>",
|
101 |
+
"<extra_id_98>",
|
102 |
+
"<extra_id_99>"
|
103 |
+
],
|
104 |
+
"eos_token": {
|
105 |
+
"content": "</s>",
|
106 |
+
"lstrip": false,
|
107 |
+
"normalized": false,
|
108 |
+
"rstrip": false,
|
109 |
+
"single_word": false
|
110 |
+
},
|
111 |
+
"pad_token": {
|
112 |
+
"content": "<pad>",
|
113 |
+
"lstrip": false,
|
114 |
+
"normalized": false,
|
115 |
+
"rstrip": false,
|
116 |
+
"single_word": false
|
117 |
+
},
|
118 |
+
"unk_token": {
|
119 |
+
"content": "<unk>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": false,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false
|
124 |
+
}
|
125 |
+
}
|
tokenizer/spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
|
3 |
+
size 791656
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,940 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<pad>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "</s>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "<unk>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"32000": {
|
29 |
+
"content": "<extra_id_99>",
|
30 |
+
"lstrip": true,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": true,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"32001": {
|
37 |
+
"content": "<extra_id_98>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": true,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"32002": {
|
45 |
+
"content": "<extra_id_97>",
|
46 |
+
"lstrip": true,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": true,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"32003": {
|
53 |
+
"content": "<extra_id_96>",
|
54 |
+
"lstrip": true,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": true,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"32004": {
|
61 |
+
"content": "<extra_id_95>",
|
62 |
+
"lstrip": true,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": true,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"32005": {
|
69 |
+
"content": "<extra_id_94>",
|
70 |
+
"lstrip": true,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": true,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"32006": {
|
77 |
+
"content": "<extra_id_93>",
|
78 |
+
"lstrip": true,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": true,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"32007": {
|
85 |
+
"content": "<extra_id_92>",
|
86 |
+
"lstrip": true,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": true,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"32008": {
|
93 |
+
"content": "<extra_id_91>",
|
94 |
+
"lstrip": true,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": true,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"32009": {
|
101 |
+
"content": "<extra_id_90>",
|
102 |
+
"lstrip": true,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": true,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"32010": {
|
109 |
+
"content": "<extra_id_89>",
|
110 |
+
"lstrip": true,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": true,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"32011": {
|
117 |
+
"content": "<extra_id_88>",
|
118 |
+
"lstrip": true,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": true,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"32012": {
|
125 |
+
"content": "<extra_id_87>",
|
126 |
+
"lstrip": true,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": true,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
},
|
132 |
+
"32013": {
|
133 |
+
"content": "<extra_id_86>",
|
134 |
+
"lstrip": true,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": true,
|
137 |
+
"single_word": false,
|
138 |
+
"special": true
|
139 |
+
},
|
140 |
+
"32014": {
|
141 |
+
"content": "<extra_id_85>",
|
142 |
+
"lstrip": true,
|
143 |
+
"normalized": false,
|
144 |
+
"rstrip": true,
|
145 |
+
"single_word": false,
|
146 |
+
"special": true
|
147 |
+
},
|
148 |
+
"32015": {
|
149 |
+
"content": "<extra_id_84>",
|
150 |
+
"lstrip": true,
|
151 |
+
"normalized": false,
|
152 |
+
"rstrip": true,
|
153 |
+
"single_word": false,
|
154 |
+
"special": true
|
155 |
+
},
|
156 |
+
"32016": {
|
157 |
+
"content": "<extra_id_83>",
|
158 |
+
"lstrip": true,
|
159 |
+
"normalized": false,
|
160 |
+
"rstrip": true,
|
161 |
+
"single_word": false,
|
162 |
+
"special": true
|
163 |
+
},
|
164 |
+
"32017": {
|
165 |
+
"content": "<extra_id_82>",
|
166 |
+
"lstrip": true,
|
167 |
+
"normalized": false,
|
168 |
+
"rstrip": true,
|
169 |
+
"single_word": false,
|
170 |
+
"special": true
|
171 |
+
},
|
172 |
+
"32018": {
|
173 |
+
"content": "<extra_id_81>",
|
174 |
+
"lstrip": true,
|
175 |
+
"normalized": false,
|
176 |
+
"rstrip": true,
|
177 |
+
"single_word": false,
|
178 |
+
"special": true
|
179 |
+
},
|
180 |
+
"32019": {
|
181 |
+
"content": "<extra_id_80>",
|
182 |
+
"lstrip": true,
|
183 |
+
"normalized": false,
|
184 |
+
"rstrip": true,
|
185 |
+
"single_word": false,
|
186 |
+
"special": true
|
187 |
+
},
|
188 |
+
"32020": {
|
189 |
+
"content": "<extra_id_79>",
|
190 |
+
"lstrip": true,
|
191 |
+
"normalized": false,
|
192 |
+
"rstrip": true,
|
193 |
+
"single_word": false,
|
194 |
+
"special": true
|
195 |
+
},
|
196 |
+
"32021": {
|
197 |
+
"content": "<extra_id_78>",
|
198 |
+
"lstrip": true,
|
199 |
+
"normalized": false,
|
200 |
+
"rstrip": true,
|
201 |
+
"single_word": false,
|
202 |
+
"special": true
|
203 |
+
},
|
204 |
+
"32022": {
|
205 |
+
"content": "<extra_id_77>",
|
206 |
+
"lstrip": true,
|
207 |
+
"normalized": false,
|
208 |
+
"rstrip": true,
|
209 |
+
"single_word": false,
|
210 |
+
"special": true
|
211 |
+
},
|
212 |
+
"32023": {
|
213 |
+
"content": "<extra_id_76>",
|
214 |
+
"lstrip": true,
|
215 |
+
"normalized": false,
|
216 |
+
"rstrip": true,
|
217 |
+
"single_word": false,
|
218 |
+
"special": true
|
219 |
+
},
|
220 |
+
"32024": {
|
221 |
+
"content": "<extra_id_75>",
|
222 |
+
"lstrip": true,
|
223 |
+
"normalized": false,
|
224 |
+
"rstrip": true,
|
225 |
+
"single_word": false,
|
226 |
+
"special": true
|
227 |
+
},
|
228 |
+
"32025": {
|
229 |
+
"content": "<extra_id_74>",
|
230 |
+
"lstrip": true,
|
231 |
+
"normalized": false,
|
232 |
+
"rstrip": true,
|
233 |
+
"single_word": false,
|
234 |
+
"special": true
|
235 |
+
},
|
236 |
+
"32026": {
|
237 |
+
"content": "<extra_id_73>",
|
238 |
+
"lstrip": true,
|
239 |
+
"normalized": false,
|
240 |
+
"rstrip": true,
|
241 |
+
"single_word": false,
|
242 |
+
"special": true
|
243 |
+
},
|
244 |
+
"32027": {
|
245 |
+
"content": "<extra_id_72>",
|
246 |
+
"lstrip": true,
|
247 |
+
"normalized": false,
|
248 |
+
"rstrip": true,
|
249 |
+
"single_word": false,
|
250 |
+
"special": true
|
251 |
+
},
|
252 |
+
"32028": {
|
253 |
+
"content": "<extra_id_71>",
|
254 |
+
"lstrip": true,
|
255 |
+
"normalized": false,
|
256 |
+
"rstrip": true,
|
257 |
+
"single_word": false,
|
258 |
+
"special": true
|
259 |
+
},
|
260 |
+
"32029": {
|
261 |
+
"content": "<extra_id_70>",
|
262 |
+
"lstrip": true,
|
263 |
+
"normalized": false,
|
264 |
+
"rstrip": true,
|
265 |
+
"single_word": false,
|
266 |
+
"special": true
|
267 |
+
},
|
268 |
+
"32030": {
|
269 |
+
"content": "<extra_id_69>",
|
270 |
+
"lstrip": true,
|
271 |
+
"normalized": false,
|
272 |
+
"rstrip": true,
|
273 |
+
"single_word": false,
|
274 |
+
"special": true
|
275 |
+
},
|
276 |
+
"32031": {
|
277 |
+
"content": "<extra_id_68>",
|
278 |
+
"lstrip": true,
|
279 |
+
"normalized": false,
|
280 |
+
"rstrip": true,
|
281 |
+
"single_word": false,
|
282 |
+
"special": true
|
283 |
+
},
|
284 |
+
"32032": {
|
285 |
+
"content": "<extra_id_67>",
|
286 |
+
"lstrip": true,
|
287 |
+
"normalized": false,
|
288 |
+
"rstrip": true,
|
289 |
+
"single_word": false,
|
290 |
+
"special": true
|
291 |
+
},
|
292 |
+
"32033": {
|
293 |
+
"content": "<extra_id_66>",
|
294 |
+
"lstrip": true,
|
295 |
+
"normalized": false,
|
296 |
+
"rstrip": true,
|
297 |
+
"single_word": false,
|
298 |
+
"special": true
|
299 |
+
},
|
300 |
+
"32034": {
|
301 |
+
"content": "<extra_id_65>",
|
302 |
+
"lstrip": true,
|
303 |
+
"normalized": false,
|
304 |
+
"rstrip": true,
|
305 |
+
"single_word": false,
|
306 |
+
"special": true
|
307 |
+
},
|
308 |
+
"32035": {
|
309 |
+
"content": "<extra_id_64>",
|
310 |
+
"lstrip": true,
|
311 |
+
"normalized": false,
|
312 |
+
"rstrip": true,
|
313 |
+
"single_word": false,
|
314 |
+
"special": true
|
315 |
+
},
|
316 |
+
"32036": {
|
317 |
+
"content": "<extra_id_63>",
|
318 |
+
"lstrip": true,
|
319 |
+
"normalized": false,
|
320 |
+
"rstrip": true,
|
321 |
+
"single_word": false,
|
322 |
+
"special": true
|
323 |
+
},
|
324 |
+
"32037": {
|
325 |
+
"content": "<extra_id_62>",
|
326 |
+
"lstrip": true,
|
327 |
+
"normalized": false,
|
328 |
+
"rstrip": true,
|
329 |
+
"single_word": false,
|
330 |
+
"special": true
|
331 |
+
},
|
332 |
+
"32038": {
|
333 |
+
"content": "<extra_id_61>",
|
334 |
+
"lstrip": true,
|
335 |
+
"normalized": false,
|
336 |
+
"rstrip": true,
|
337 |
+
"single_word": false,
|
338 |
+
"special": true
|
339 |
+
},
|
340 |
+
"32039": {
|
341 |
+
"content": "<extra_id_60>",
|
342 |
+
"lstrip": true,
|
343 |
+
"normalized": false,
|
344 |
+
"rstrip": true,
|
345 |
+
"single_word": false,
|
346 |
+
"special": true
|
347 |
+
},
|
348 |
+
"32040": {
|
349 |
+
"content": "<extra_id_59>",
|
350 |
+
"lstrip": true,
|
351 |
+
"normalized": false,
|
352 |
+
"rstrip": true,
|
353 |
+
"single_word": false,
|
354 |
+
"special": true
|
355 |
+
},
|
356 |
+
"32041": {
|
357 |
+
"content": "<extra_id_58>",
|
358 |
+
"lstrip": true,
|
359 |
+
"normalized": false,
|
360 |
+
"rstrip": true,
|
361 |
+
"single_word": false,
|
362 |
+
"special": true
|
363 |
+
},
|
364 |
+
"32042": {
|
365 |
+
"content": "<extra_id_57>",
|
366 |
+
"lstrip": true,
|
367 |
+
"normalized": false,
|
368 |
+
"rstrip": true,
|
369 |
+
"single_word": false,
|
370 |
+
"special": true
|
371 |
+
},
|
372 |
+
"32043": {
|
373 |
+
"content": "<extra_id_56>",
|
374 |
+
"lstrip": true,
|
375 |
+
"normalized": false,
|
376 |
+
"rstrip": true,
|
377 |
+
"single_word": false,
|
378 |
+
"special": true
|
379 |
+
},
|
380 |
+
"32044": {
|
381 |
+
"content": "<extra_id_55>",
|
382 |
+
"lstrip": true,
|
383 |
+
"normalized": false,
|
384 |
+
"rstrip": true,
|
385 |
+
"single_word": false,
|
386 |
+
"special": true
|
387 |
+
},
|
388 |
+
"32045": {
|
389 |
+
"content": "<extra_id_54>",
|
390 |
+
"lstrip": true,
|
391 |
+
"normalized": false,
|
392 |
+
"rstrip": true,
|
393 |
+
"single_word": false,
|
394 |
+
"special": true
|
395 |
+
},
|
396 |
+
"32046": {
|
397 |
+
"content": "<extra_id_53>",
|
398 |
+
"lstrip": true,
|
399 |
+
"normalized": false,
|
400 |
+
"rstrip": true,
|
401 |
+
"single_word": false,
|
402 |
+
"special": true
|
403 |
+
},
|
404 |
+
"32047": {
|
405 |
+
"content": "<extra_id_52>",
|
406 |
+
"lstrip": true,
|
407 |
+
"normalized": false,
|
408 |
+
"rstrip": true,
|
409 |
+
"single_word": false,
|
410 |
+
"special": true
|
411 |
+
},
|
412 |
+
"32048": {
|
413 |
+
"content": "<extra_id_51>",
|
414 |
+
"lstrip": true,
|
415 |
+
"normalized": false,
|
416 |
+
"rstrip": true,
|
417 |
+
"single_word": false,
|
418 |
+
"special": true
|
419 |
+
},
|
420 |
+
"32049": {
|
421 |
+
"content": "<extra_id_50>",
|
422 |
+
"lstrip": true,
|
423 |
+
"normalized": false,
|
424 |
+
"rstrip": true,
|
425 |
+
"single_word": false,
|
426 |
+
"special": true
|
427 |
+
},
|
428 |
+
"32050": {
|
429 |
+
"content": "<extra_id_49>",
|
430 |
+
"lstrip": true,
|
431 |
+
"normalized": false,
|
432 |
+
"rstrip": true,
|
433 |
+
"single_word": false,
|
434 |
+
"special": true
|
435 |
+
},
|
436 |
+
"32051": {
|
437 |
+
"content": "<extra_id_48>",
|
438 |
+
"lstrip": true,
|
439 |
+
"normalized": false,
|
440 |
+
"rstrip": true,
|
441 |
+
"single_word": false,
|
442 |
+
"special": true
|
443 |
+
},
|
444 |
+
"32052": {
|
445 |
+
"content": "<extra_id_47>",
|
446 |
+
"lstrip": true,
|
447 |
+
"normalized": false,
|
448 |
+
"rstrip": true,
|
449 |
+
"single_word": false,
|
450 |
+
"special": true
|
451 |
+
},
|
452 |
+
"32053": {
|
453 |
+
"content": "<extra_id_46>",
|
454 |
+
"lstrip": true,
|
455 |
+
"normalized": false,
|
456 |
+
"rstrip": true,
|
457 |
+
"single_word": false,
|
458 |
+
"special": true
|
459 |
+
},
|
460 |
+
"32054": {
|
461 |
+
"content": "<extra_id_45>",
|
462 |
+
"lstrip": true,
|
463 |
+
"normalized": false,
|
464 |
+
"rstrip": true,
|
465 |
+
"single_word": false,
|
466 |
+
"special": true
|
467 |
+
},
|
468 |
+
"32055": {
|
469 |
+
"content": "<extra_id_44>",
|
470 |
+
"lstrip": true,
|
471 |
+
"normalized": false,
|
472 |
+
"rstrip": true,
|
473 |
+
"single_word": false,
|
474 |
+
"special": true
|
475 |
+
},
|
476 |
+
"32056": {
|
477 |
+
"content": "<extra_id_43>",
|
478 |
+
"lstrip": true,
|
479 |
+
"normalized": false,
|
480 |
+
"rstrip": true,
|
481 |
+
"single_word": false,
|
482 |
+
"special": true
|
483 |
+
},
|
484 |
+
"32057": {
|
485 |
+
"content": "<extra_id_42>",
|
486 |
+
"lstrip": true,
|
487 |
+
"normalized": false,
|
488 |
+
"rstrip": true,
|
489 |
+
"single_word": false,
|
490 |
+
"special": true
|
491 |
+
},
|
492 |
+
"32058": {
|
493 |
+
"content": "<extra_id_41>",
|
494 |
+
"lstrip": true,
|
495 |
+
"normalized": false,
|
496 |
+
"rstrip": true,
|
497 |
+
"single_word": false,
|
498 |
+
"special": true
|
499 |
+
},
|
500 |
+
"32059": {
|
501 |
+
"content": "<extra_id_40>",
|
502 |
+
"lstrip": true,
|
503 |
+
"normalized": false,
|
504 |
+
"rstrip": true,
|
505 |
+
"single_word": false,
|
506 |
+
"special": true
|
507 |
+
},
|
508 |
+
"32060": {
|
509 |
+
"content": "<extra_id_39>",
|
510 |
+
"lstrip": true,
|
511 |
+
"normalized": false,
|
512 |
+
"rstrip": true,
|
513 |
+
"single_word": false,
|
514 |
+
"special": true
|
515 |
+
},
|
516 |
+
"32061": {
|
517 |
+
"content": "<extra_id_38>",
|
518 |
+
"lstrip": true,
|
519 |
+
"normalized": false,
|
520 |
+
"rstrip": true,
|
521 |
+
"single_word": false,
|
522 |
+
"special": true
|
523 |
+
},
|
524 |
+
"32062": {
|
525 |
+
"content": "<extra_id_37>",
|
526 |
+
"lstrip": true,
|
527 |
+
"normalized": false,
|
528 |
+
"rstrip": true,
|
529 |
+
"single_word": false,
|
530 |
+
"special": true
|
531 |
+
},
|
532 |
+
"32063": {
|
533 |
+
"content": "<extra_id_36>",
|
534 |
+
"lstrip": true,
|
535 |
+
"normalized": false,
|
536 |
+
"rstrip": true,
|
537 |
+
"single_word": false,
|
538 |
+
"special": true
|
539 |
+
},
|
540 |
+
"32064": {
|
541 |
+
"content": "<extra_id_35>",
|
542 |
+
"lstrip": true,
|
543 |
+
"normalized": false,
|
544 |
+
"rstrip": true,
|
545 |
+
"single_word": false,
|
546 |
+
"special": true
|
547 |
+
},
|
548 |
+
"32065": {
|
549 |
+
"content": "<extra_id_34>",
|
550 |
+
"lstrip": true,
|
551 |
+
"normalized": false,
|
552 |
+
"rstrip": true,
|
553 |
+
"single_word": false,
|
554 |
+
"special": true
|
555 |
+
},
|
556 |
+
"32066": {
|
557 |
+
"content": "<extra_id_33>",
|
558 |
+
"lstrip": true,
|
559 |
+
"normalized": false,
|
560 |
+
"rstrip": true,
|
561 |
+
"single_word": false,
|
562 |
+
"special": true
|
563 |
+
},
|
564 |
+
"32067": {
|
565 |
+
"content": "<extra_id_32>",
|
566 |
+
"lstrip": true,
|
567 |
+
"normalized": false,
|
568 |
+
"rstrip": true,
|
569 |
+
"single_word": false,
|
570 |
+
"special": true
|
571 |
+
},
|
572 |
+
"32068": {
|
573 |
+
"content": "<extra_id_31>",
|
574 |
+
"lstrip": true,
|
575 |
+
"normalized": false,
|
576 |
+
"rstrip": true,
|
577 |
+
"single_word": false,
|
578 |
+
"special": true
|
579 |
+
},
|
580 |
+
"32069": {
|
581 |
+
"content": "<extra_id_30>",
|
582 |
+
"lstrip": true,
|
583 |
+
"normalized": false,
|
584 |
+
"rstrip": true,
|
585 |
+
"single_word": false,
|
586 |
+
"special": true
|
587 |
+
},
|
588 |
+
"32070": {
|
589 |
+
"content": "<extra_id_29>",
|
590 |
+
"lstrip": true,
|
591 |
+
"normalized": false,
|
592 |
+
"rstrip": true,
|
593 |
+
"single_word": false,
|
594 |
+
"special": true
|
595 |
+
},
|
596 |
+
"32071": {
|
597 |
+
"content": "<extra_id_28>",
|
598 |
+
"lstrip": true,
|
599 |
+
"normalized": false,
|
600 |
+
"rstrip": true,
|
601 |
+
"single_word": false,
|
602 |
+
"special": true
|
603 |
+
},
|
604 |
+
"32072": {
|
605 |
+
"content": "<extra_id_27>",
|
606 |
+
"lstrip": true,
|
607 |
+
"normalized": false,
|
608 |
+
"rstrip": true,
|
609 |
+
"single_word": false,
|
610 |
+
"special": true
|
611 |
+
},
|
612 |
+
"32073": {
|
613 |
+
"content": "<extra_id_26>",
|
614 |
+
"lstrip": true,
|
615 |
+
"normalized": false,
|
616 |
+
"rstrip": true,
|
617 |
+
"single_word": false,
|
618 |
+
"special": true
|
619 |
+
},
|
620 |
+
"32074": {
|
621 |
+
"content": "<extra_id_25>",
|
622 |
+
"lstrip": true,
|
623 |
+
"normalized": false,
|
624 |
+
"rstrip": true,
|
625 |
+
"single_word": false,
|
626 |
+
"special": true
|
627 |
+
},
|
628 |
+
"32075": {
|
629 |
+
"content": "<extra_id_24>",
|
630 |
+
"lstrip": true,
|
631 |
+
"normalized": false,
|
632 |
+
"rstrip": true,
|
633 |
+
"single_word": false,
|
634 |
+
"special": true
|
635 |
+
},
|
636 |
+
"32076": {
|
637 |
+
"content": "<extra_id_23>",
|
638 |
+
"lstrip": true,
|
639 |
+
"normalized": false,
|
640 |
+
"rstrip": true,
|
641 |
+
"single_word": false,
|
642 |
+
"special": true
|
643 |
+
},
|
644 |
+
"32077": {
|
645 |
+
"content": "<extra_id_22>",
|
646 |
+
"lstrip": true,
|
647 |
+
"normalized": false,
|
648 |
+
"rstrip": true,
|
649 |
+
"single_word": false,
|
650 |
+
"special": true
|
651 |
+
},
|
652 |
+
"32078": {
|
653 |
+
"content": "<extra_id_21>",
|
654 |
+
"lstrip": true,
|
655 |
+
"normalized": false,
|
656 |
+
"rstrip": true,
|
657 |
+
"single_word": false,
|
658 |
+
"special": true
|
659 |
+
},
|
660 |
+
"32079": {
|
661 |
+
"content": "<extra_id_20>",
|
662 |
+
"lstrip": true,
|
663 |
+
"normalized": false,
|
664 |
+
"rstrip": true,
|
665 |
+
"single_word": false,
|
666 |
+
"special": true
|
667 |
+
},
|
668 |
+
"32080": {
|
669 |
+
"content": "<extra_id_19>",
|
670 |
+
"lstrip": true,
|
671 |
+
"normalized": false,
|
672 |
+
"rstrip": true,
|
673 |
+
"single_word": false,
|
674 |
+
"special": true
|
675 |
+
},
|
676 |
+
"32081": {
|
677 |
+
"content": "<extra_id_18>",
|
678 |
+
"lstrip": true,
|
679 |
+
"normalized": false,
|
680 |
+
"rstrip": true,
|
681 |
+
"single_word": false,
|
682 |
+
"special": true
|
683 |
+
},
|
684 |
+
"32082": {
|
685 |
+
"content": "<extra_id_17>",
|
686 |
+
"lstrip": true,
|
687 |
+
"normalized": false,
|
688 |
+
"rstrip": true,
|
689 |
+
"single_word": false,
|
690 |
+
"special": true
|
691 |
+
},
|
692 |
+
"32083": {
|
693 |
+
"content": "<extra_id_16>",
|
694 |
+
"lstrip": true,
|
695 |
+
"normalized": false,
|
696 |
+
"rstrip": true,
|
697 |
+
"single_word": false,
|
698 |
+
"special": true
|
699 |
+
},
|
700 |
+
"32084": {
|
701 |
+
"content": "<extra_id_15>",
|
702 |
+
"lstrip": true,
|
703 |
+
"normalized": false,
|
704 |
+
"rstrip": true,
|
705 |
+
"single_word": false,
|
706 |
+
"special": true
|
707 |
+
},
|
708 |
+
"32085": {
|
709 |
+
"content": "<extra_id_14>",
|
710 |
+
"lstrip": true,
|
711 |
+
"normalized": false,
|
712 |
+
"rstrip": true,
|
713 |
+
"single_word": false,
|
714 |
+
"special": true
|
715 |
+
},
|
716 |
+
"32086": {
|
717 |
+
"content": "<extra_id_13>",
|
718 |
+
"lstrip": true,
|
719 |
+
"normalized": false,
|
720 |
+
"rstrip": true,
|
721 |
+
"single_word": false,
|
722 |
+
"special": true
|
723 |
+
},
|
724 |
+
"32087": {
|
725 |
+
"content": "<extra_id_12>",
|
726 |
+
"lstrip": true,
|
727 |
+
"normalized": false,
|
728 |
+
"rstrip": true,
|
729 |
+
"single_word": false,
|
730 |
+
"special": true
|
731 |
+
},
|
732 |
+
"32088": {
|
733 |
+
"content": "<extra_id_11>",
|
734 |
+
"lstrip": true,
|
735 |
+
"normalized": false,
|
736 |
+
"rstrip": true,
|
737 |
+
"single_word": false,
|
738 |
+
"special": true
|
739 |
+
},
|
740 |
+
"32089": {
|
741 |
+
"content": "<extra_id_10>",
|
742 |
+
"lstrip": true,
|
743 |
+
"normalized": false,
|
744 |
+
"rstrip": true,
|
745 |
+
"single_word": false,
|
746 |
+
"special": true
|
747 |
+
},
|
748 |
+
"32090": {
|
749 |
+
"content": "<extra_id_9>",
|
750 |
+
"lstrip": true,
|
751 |
+
"normalized": false,
|
752 |
+
"rstrip": true,
|
753 |
+
"single_word": false,
|
754 |
+
"special": true
|
755 |
+
},
|
756 |
+
"32091": {
|
757 |
+
"content": "<extra_id_8>",
|
758 |
+
"lstrip": true,
|
759 |
+
"normalized": false,
|
760 |
+
"rstrip": true,
|
761 |
+
"single_word": false,
|
762 |
+
"special": true
|
763 |
+
},
|
764 |
+
"32092": {
|
765 |
+
"content": "<extra_id_7>",
|
766 |
+
"lstrip": true,
|
767 |
+
"normalized": false,
|
768 |
+
"rstrip": true,
|
769 |
+
"single_word": false,
|
770 |
+
"special": true
|
771 |
+
},
|
772 |
+
"32093": {
|
773 |
+
"content": "<extra_id_6>",
|
774 |
+
"lstrip": true,
|
775 |
+
"normalized": false,
|
776 |
+
"rstrip": true,
|
777 |
+
"single_word": false,
|
778 |
+
"special": true
|
779 |
+
},
|
780 |
+
"32094": {
|
781 |
+
"content": "<extra_id_5>",
|
782 |
+
"lstrip": true,
|
783 |
+
"normalized": false,
|
784 |
+
"rstrip": true,
|
785 |
+
"single_word": false,
|
786 |
+
"special": true
|
787 |
+
},
|
788 |
+
"32095": {
|
789 |
+
"content": "<extra_id_4>",
|
790 |
+
"lstrip": true,
|
791 |
+
"normalized": false,
|
792 |
+
"rstrip": true,
|
793 |
+
"single_word": false,
|
794 |
+
"special": true
|
795 |
+
},
|
796 |
+
"32096": {
|
797 |
+
"content": "<extra_id_3>",
|
798 |
+
"lstrip": true,
|
799 |
+
"normalized": false,
|
800 |
+
"rstrip": true,
|
801 |
+
"single_word": false,
|
802 |
+
"special": true
|
803 |
+
},
|
804 |
+
"32097": {
|
805 |
+
"content": "<extra_id_2>",
|
806 |
+
"lstrip": true,
|
807 |
+
"normalized": false,
|
808 |
+
"rstrip": true,
|
809 |
+
"single_word": false,
|
810 |
+
"special": true
|
811 |
+
},
|
812 |
+
"32098": {
|
813 |
+
"content": "<extra_id_1>",
|
814 |
+
"lstrip": true,
|
815 |
+
"normalized": false,
|
816 |
+
"rstrip": true,
|
817 |
+
"single_word": false,
|
818 |
+
"special": true
|
819 |
+
},
|
820 |
+
"32099": {
|
821 |
+
"content": "<extra_id_0>",
|
822 |
+
"lstrip": true,
|
823 |
+
"normalized": false,
|
824 |
+
"rstrip": true,
|
825 |
+
"single_word": false,
|
826 |
+
"special": true
|
827 |
+
}
|
828 |
+
},
|
829 |
+
"additional_special_tokens": [
|
830 |
+
"<extra_id_0>",
|
831 |
+
"<extra_id_1>",
|
832 |
+
"<extra_id_2>",
|
833 |
+
"<extra_id_3>",
|
834 |
+
"<extra_id_4>",
|
835 |
+
"<extra_id_5>",
|
836 |
+
"<extra_id_6>",
|
837 |
+
"<extra_id_7>",
|
838 |
+
"<extra_id_8>",
|
839 |
+
"<extra_id_9>",
|
840 |
+
"<extra_id_10>",
|
841 |
+
"<extra_id_11>",
|
842 |
+
"<extra_id_12>",
|
843 |
+
"<extra_id_13>",
|
844 |
+
"<extra_id_14>",
|
845 |
+
"<extra_id_15>",
|
846 |
+
"<extra_id_16>",
|
847 |
+
"<extra_id_17>",
|
848 |
+
"<extra_id_18>",
|
849 |
+
"<extra_id_19>",
|
850 |
+
"<extra_id_20>",
|
851 |
+
"<extra_id_21>",
|
852 |
+
"<extra_id_22>",
|
853 |
+
"<extra_id_23>",
|
854 |
+
"<extra_id_24>",
|
855 |
+
"<extra_id_25>",
|
856 |
+
"<extra_id_26>",
|
857 |
+
"<extra_id_27>",
|
858 |
+
"<extra_id_28>",
|
859 |
+
"<extra_id_29>",
|
860 |
+
"<extra_id_30>",
|
861 |
+
"<extra_id_31>",
|
862 |
+
"<extra_id_32>",
|
863 |
+
"<extra_id_33>",
|
864 |
+
"<extra_id_34>",
|
865 |
+
"<extra_id_35>",
|
866 |
+
"<extra_id_36>",
|
867 |
+
"<extra_id_37>",
|
868 |
+
"<extra_id_38>",
|
869 |
+
"<extra_id_39>",
|
870 |
+
"<extra_id_40>",
|
871 |
+
"<extra_id_41>",
|
872 |
+
"<extra_id_42>",
|
873 |
+
"<extra_id_43>",
|
874 |
+
"<extra_id_44>",
|
875 |
+
"<extra_id_45>",
|
876 |
+
"<extra_id_46>",
|
877 |
+
"<extra_id_47>",
|
878 |
+
"<extra_id_48>",
|
879 |
+
"<extra_id_49>",
|
880 |
+
"<extra_id_50>",
|
881 |
+
"<extra_id_51>",
|
882 |
+
"<extra_id_52>",
|
883 |
+
"<extra_id_53>",
|
884 |
+
"<extra_id_54>",
|
885 |
+
"<extra_id_55>",
|
886 |
+
"<extra_id_56>",
|
887 |
+
"<extra_id_57>",
|
888 |
+
"<extra_id_58>",
|
889 |
+
"<extra_id_59>",
|
890 |
+
"<extra_id_60>",
|
891 |
+
"<extra_id_61>",
|
892 |
+
"<extra_id_62>",
|
893 |
+
"<extra_id_63>",
|
894 |
+
"<extra_id_64>",
|
895 |
+
"<extra_id_65>",
|
896 |
+
"<extra_id_66>",
|
897 |
+
"<extra_id_67>",
|
898 |
+
"<extra_id_68>",
|
899 |
+
"<extra_id_69>",
|
900 |
+
"<extra_id_70>",
|
901 |
+
"<extra_id_71>",
|
902 |
+
"<extra_id_72>",
|
903 |
+
"<extra_id_73>",
|
904 |
+
"<extra_id_74>",
|
905 |
+
"<extra_id_75>",
|
906 |
+
"<extra_id_76>",
|
907 |
+
"<extra_id_77>",
|
908 |
+
"<extra_id_78>",
|
909 |
+
"<extra_id_79>",
|
910 |
+
"<extra_id_80>",
|
911 |
+
"<extra_id_81>",
|
912 |
+
"<extra_id_82>",
|
913 |
+
"<extra_id_83>",
|
914 |
+
"<extra_id_84>",
|
915 |
+
"<extra_id_85>",
|
916 |
+
"<extra_id_86>",
|
917 |
+
"<extra_id_87>",
|
918 |
+
"<extra_id_88>",
|
919 |
+
"<extra_id_89>",
|
920 |
+
"<extra_id_90>",
|
921 |
+
"<extra_id_91>",
|
922 |
+
"<extra_id_92>",
|
923 |
+
"<extra_id_93>",
|
924 |
+
"<extra_id_94>",
|
925 |
+
"<extra_id_95>",
|
926 |
+
"<extra_id_96>",
|
927 |
+
"<extra_id_97>",
|
928 |
+
"<extra_id_98>",
|
929 |
+
"<extra_id_99>"
|
930 |
+
],
|
931 |
+
"clean_up_tokenization_spaces": true,
|
932 |
+
"eos_token": "</s>",
|
933 |
+
"extra_ids": 100,
|
934 |
+
"legacy": true,
|
935 |
+
"model_max_length": 226,
|
936 |
+
"pad_token": "<pad>",
|
937 |
+
"sp_model_kwargs": {},
|
938 |
+
"tokenizer_class": "T5Tokenizer",
|
939 |
+
"unk_token": "<unk>"
|
940 |
+
}
|
transformer/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "CogVideoXTransformer3DModel",
|
3 |
+
"_diffusers_version": "0.30.0.dev0",
|
4 |
+
"activation_fn": "gelu-approximate",
|
5 |
+
"attention_bias": true,
|
6 |
+
"attention_head_dim": 64,
|
7 |
+
"dropout": 0.0,
|
8 |
+
"flip_sin_to_cos": true,
|
9 |
+
"freq_shift": 0,
|
10 |
+
"in_channels": 16,
|
11 |
+
"max_text_seq_length": 226,
|
12 |
+
"norm_elementwise_affine": true,
|
13 |
+
"norm_eps": 1e-05,
|
14 |
+
"num_attention_heads": 30,
|
15 |
+
"num_layers": 30,
|
16 |
+
"out_channels": 16,
|
17 |
+
"patch_size": 2,
|
18 |
+
"sample_frames": 49,
|
19 |
+
"sample_height": 60,
|
20 |
+
"sample_width": 90,
|
21 |
+
"spatial_interpolation_scale": 1.875,
|
22 |
+
"temporal_compression_ratio": 4,
|
23 |
+
"temporal_interpolation_scale": 1.0,
|
24 |
+
"text_embed_dim": 4096,
|
25 |
+
"time_embed_dim": 512,
|
26 |
+
"timestep_activation_fn": "silu",
|
27 |
+
"use_rotary_positional_embeddings": false
|
28 |
+
}
|
transformer/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fbb6a5e67c70885a8ed8e33df144ac61253e45977be5035fa18cfdf77d386c7
|
3 |
+
size 3387650264
|
vae/config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKLCogVideoX",
|
3 |
+
"_diffusers_version": "0.30.0.dev0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"block_out_channels": [
|
6 |
+
128,
|
7 |
+
256,
|
8 |
+
256,
|
9 |
+
512
|
10 |
+
],
|
11 |
+
"down_block_types": [
|
12 |
+
"CogVideoXDownBlock3D",
|
13 |
+
"CogVideoXDownBlock3D",
|
14 |
+
"CogVideoXDownBlock3D",
|
15 |
+
"CogVideoXDownBlock3D"
|
16 |
+
],
|
17 |
+
"force_upcast": true,
|
18 |
+
"in_channels": 3,
|
19 |
+
"latent_channels": 16,
|
20 |
+
"latents_mean": null,
|
21 |
+
"latents_std": null,
|
22 |
+
"layers_per_block": 3,
|
23 |
+
"norm_eps": 1e-06,
|
24 |
+
"norm_num_groups": 32,
|
25 |
+
"out_channels": 3,
|
26 |
+
"sample_height": 480,
|
27 |
+
"sample_width": 720,
|
28 |
+
"scaling_factor": 1.15258426,
|
29 |
+
"shift_factor": null,
|
30 |
+
"temporal_compression_ratio": 4,
|
31 |
+
"up_block_types": [
|
32 |
+
"CogVideoXUpBlock3D",
|
33 |
+
"CogVideoXUpBlock3D",
|
34 |
+
"CogVideoXUpBlock3D",
|
35 |
+
"CogVideoXUpBlock3D"
|
36 |
+
],
|
37 |
+
"use_post_quant_conv": false,
|
38 |
+
"use_quant_conv": false
|
39 |
+
}
|
vae/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e25e94a8fc70774349bb4a03b8ef272f5d80f934863f7b0552c37c6a74f91542
|
3 |
+
size 431220702
|