File size: 1,550 Bytes
1a23489 9483c7a 1a23489 200311b 995f85d 200311b f4fe8d4 200311b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
---
base_model:
- google/gemma-2-2b
pipeline_tag: text-generation
metrics:
- accuracy
license: mit
language:
- en
tags:
- pytorch
- transformers
- keras
- Spell Checker
---
## Description
The RLM-spell-checker is a fine-tuned version of gemma-2b-V3, enhanced using LoRA (Low-Rank Adaptation) to specialize in spelling correction. LoRA fine-tunes models efficiently by adjusting only a few parameters, allowing the RLM-spell-checker to retain the robust language understanding of gemma-2b-V3 while focusing on identifying and correcting spelling errors. This fine-tuning enables the model to provide context-aware suggestions for corrections, making it a powerful tool for real-time applications like automated writing assistance, chatbots, and word processors. By improving spelling accuracy without interrupting the natural flow of text, the RLM-spell-checker enhances text quality and user experience in various tasks.
### Author: [Rudra Shah](https://www.linkedin.com/in/rudra-shah-b044781b4/)
## Running Model
``` python
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("rudrashah/RLM-spell-checker")
model = AutoModelForCausalLM.from_pretrained("rudrashah/RLM-spell-checker")
sent = "Whaat iss the mision?"
template = "Sentence:\n{org}\n\nCorrect_Grammar:\n{new}"
input_text = template.format(org=sent, new="")
input_ids = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**input_ids, max_new_tokens=128)
print(tokenizer.decode(outputs[0]))
``` |