Update README.md
Browse files
README.md
CHANGED
@@ -10,7 +10,6 @@ tags:
|
|
10 |
datasets:
|
11 |
- assin
|
12 |
- assin2
|
13 |
-
|
14 |
widget:
|
15 |
- source_sentence: "O advogado apresentou as provas ao juíz."
|
16 |
sentences:
|
@@ -21,37 +20,25 @@ widget:
|
|
21 |
metrics:
|
22 |
- bleu
|
23 |
---
|
24 |
-
|
25 |
-
# rufimelo/Legal-SBERTimbau-nli-large
|
26 |
-
|
27 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
28 |
-
Legal-SBERTimbau-large is based on Legal-BERTimbau-large which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-
|
29 |
-
It is adapted to the Portuguese legal domain.
|
30 |
-
|
31 |
## Usage (Sentence-Transformers)
|
32 |
-
|
33 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
34 |
-
|
35 |
```
|
36 |
pip install -U sentence-transformers
|
37 |
```
|
38 |
-
|
39 |
Then you can use the model like this:
|
40 |
-
|
41 |
```python
|
42 |
from sentence_transformers import SentenceTransformer
|
43 |
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
|
44 |
|
45 |
-
model = SentenceTransformer('rufimelo/Legal-SBERTimbau-
|
46 |
embeddings = model.encode(sentences)
|
47 |
print(embeddings)
|
48 |
```
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
## Usage (HuggingFace Transformers)
|
53 |
-
|
54 |
-
|
55 |
```python
|
56 |
from transformers import AutoTokenizer, AutoModel
|
57 |
import torch
|
@@ -63,13 +50,12 @@ def mean_pooling(model_output, attention_mask):
|
|
63 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
64 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
65 |
|
66 |
-
|
67 |
# Sentences we want sentence embeddings for
|
68 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
69 |
|
70 |
# Load model from HuggingFace Hub
|
71 |
-
tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-SBERTimbau-
|
72 |
-
model = AutoModel.from_pretrained('rufimelo/Legal-SBERTimbau-
|
73 |
|
74 |
# Tokenize sentences
|
75 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -77,26 +63,21 @@ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tenso
|
|
77 |
# Compute token embeddings
|
78 |
with torch.no_grad():
|
79 |
model_output = model(**encoded_input)
|
80 |
-
|
81 |
# Perform pooling. In this case, mean pooling.
|
82 |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
83 |
-
|
84 |
print("Sentence embeddings:")
|
85 |
print(sentence_embeddings)
|
86 |
```
|
87 |
-
|
88 |
-
|
89 |
## Evaluation Results STS
|
90 |
-
|
91 |
| Model| Dataset | PearsonCorrelation |
|
92 |
| ---------------------------------------- | ---------- | ---------- |
|
93 |
-
| Legal-SBERTimbau-large| Assin | 0.76629 |
|
94 |
-
| Legal-SBERTimbau-large| Assin2| 0.82357 |
|
95 |
-
| Legal-SBERTimbau-base| Assin | 0.71457 |
|
96 |
-
| Legal-SBERTimbau-base| Assin2| 0.73545|
|
97 |
-
| Legal-SBERTimbau-sts-large| Assin | 0.76299 |
|
98 |
-
| Legal-SBERTimbau-sts-large| Assin2| 0.81121 |
|
99 |
-
| Legal-SBERTimbau-sts-large| stsb_multi_mt pt| 0.81726 |
|
100 |
| ---------------------------------------- | ---------- |---------- |
|
101 |
| paraphrase-multilingual-mpnet-base-v2| Assin | 0.71457|
|
102 |
| paraphrase-multilingual-mpnet-base-v2| Assin2| 0.79831 |
|
@@ -104,26 +85,18 @@ print(sentence_embeddings)
|
|
104 |
| paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| Assin | 0.77641 |
|
105 |
| paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| Assin2| 0.79831 |
|
106 |
| paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| stsb_multi_mt pt| 0.84575 |
|
107 |
-
|
108 |
-
|
109 |
## Training
|
110 |
-
|
111 |
-
|
112 |
-
It was trained for Natural Language Inference (NLI). This was chosen due to the lack of Portuguese available data.
|
113 |
-
In addition to that, it was submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin) and [assin2](https://huggingface.co/datasets/assin2) datasets.
|
114 |
-
|
115 |
## Full Model Architecture
|
116 |
```
|
117 |
SentenceTransformer(
|
118 |
-
(0): Transformer({'max_seq_length':
|
119 |
-
(1): Pooling({'word_embedding_dimension':
|
120 |
)
|
121 |
```
|
122 |
-
|
123 |
## Citing & Authors
|
124 |
-
|
125 |
If you use this work, please cite BERTimbau's work:
|
126 |
-
|
127 |
```bibtex
|
128 |
@inproceedings{souza2020bertimbau,
|
129 |
author = {F{\'a}bio Souza and
|
|
|
10 |
datasets:
|
11 |
- assin
|
12 |
- assin2
|
|
|
13 |
widget:
|
14 |
- source_sentence: "O advogado apresentou as provas ao juíz."
|
15 |
sentences:
|
|
|
20 |
metrics:
|
21 |
- bleu
|
22 |
---
|
23 |
+
# rufimelo/Legal-SBERTimbau-sts-large
|
|
|
|
|
24 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
25 |
+
rufimelo/Legal-SBERTimbau-sts-large is based on Legal-BERTimbau-large which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) alrge.
|
26 |
+
It is adapted to the Portuguese legal domain and trained for STS on portuguese datasets.
|
|
|
27 |
## Usage (Sentence-Transformers)
|
|
|
28 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
|
|
29 |
```
|
30 |
pip install -U sentence-transformers
|
31 |
```
|
|
|
32 |
Then you can use the model like this:
|
|
|
33 |
```python
|
34 |
from sentence_transformers import SentenceTransformer
|
35 |
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
|
36 |
|
37 |
+
model = SentenceTransformer('rufimelo/Legal-SBERTimbau-sts-large')
|
38 |
embeddings = model.encode(sentences)
|
39 |
print(embeddings)
|
40 |
```
|
|
|
|
|
|
|
41 |
## Usage (HuggingFace Transformers)
|
|
|
|
|
42 |
```python
|
43 |
from transformers import AutoTokenizer, AutoModel
|
44 |
import torch
|
|
|
50 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
51 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
52 |
|
|
|
53 |
# Sentences we want sentence embeddings for
|
54 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-SBERTimbau-sts-large')
|
58 |
+
model = AutoModel.from_pretrained('rufimelo/Legal-SBERTimbau-sts-large')
|
59 |
|
60 |
# Tokenize sentences
|
61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
63 |
# Compute token embeddings
|
64 |
with torch.no_grad():
|
65 |
model_output = model(**encoded_input)
|
|
|
66 |
# Perform pooling. In this case, mean pooling.
|
67 |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
|
|
68 |
print("Sentence embeddings:")
|
69 |
print(sentence_embeddings)
|
70 |
```
|
|
|
|
|
71 |
## Evaluation Results STS
|
|
|
72 |
| Model| Dataset | PearsonCorrelation |
|
73 |
| ---------------------------------------- | ---------- | ---------- |
|
74 |
+
| Legal-SBERTimbau-sts-large| Assin | 0.76629 |
|
75 |
+
| Legal-SBERTimbau-sts-large| Assin2| 0.82357 |
|
76 |
+
| Legal-SBERTimbau-sts-base| Assin | 0.71457 |
|
77 |
+
| Legal-SBERTimbau-sts-base| Assin2| 0.73545|
|
78 |
+
| Legal-SBERTimbau-sts-large-v2| Assin | 0.76299 |
|
79 |
+
| Legal-SBERTimbau-sts-large-v2| Assin2| 0.81121 |
|
80 |
+
| Legal-SBERTimbau-sts-large-v2| stsb_multi_mt pt| 0.81726 |
|
81 |
| ---------------------------------------- | ---------- |---------- |
|
82 |
| paraphrase-multilingual-mpnet-base-v2| Assin | 0.71457|
|
83 |
| paraphrase-multilingual-mpnet-base-v2| Assin2| 0.79831 |
|
|
|
85 |
| paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| Assin | 0.77641 |
|
86 |
| paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| Assin2| 0.79831 |
|
87 |
| paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| stsb_multi_mt pt| 0.84575 |
|
|
|
|
|
88 |
## Training
|
89 |
+
rufimelo/Legal-SBERTimbau-sts-large is based on Legal-BERTimbau-largewhich derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) large.
|
90 |
+
It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin) and [assin2](https://huggingface.co/datasets/assin2) datasets.
|
|
|
|
|
|
|
91 |
## Full Model Architecture
|
92 |
```
|
93 |
SentenceTransformer(
|
94 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
95 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
|
96 |
)
|
97 |
```
|
|
|
98 |
## Citing & Authors
|
|
|
99 |
If you use this work, please cite BERTimbau's work:
|
|
|
100 |
```bibtex
|
101 |
@inproceedings{souza2020bertimbau,
|
102 |
author = {F{\'a}bio Souza and
|