--- language: - pt thumbnail: "Portugues SBERT for the Legal Domain" pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - transformers datasets: - assin - assin2 widget: - text: "O advogado apresentou provas ao juíz." - example_title: "Example 1" --- # rufimelo/Legal-SBERTimbau-nli-large This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. Legal-SBERTimbau-large is based on Legal-BERTimbau-large whioch derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) Large. It is adapted to the Portuguese legal domain. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Isto é um exemplo", "Isto é um outro exemplo"] model = SentenceTransformer('rufimelo/Legal-SBERTimbau-nli-large') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-SBERTimbau-nli-large') model = AutoModel.from_pretrained('rufimelo/Legal-SBERTimbau-nli-large}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results STS | Model| Dataset | PearsonCorrelation | | ---------------------------------------- | ---------- | ---------- | | Legal-SBERTimbau-large| Assin | 0.766293861 | | Legal-SBERTimbau-large| Assin2| 0.823565322 | | ---------------------------------------- | ---------- |---------- | | paraphrase-multilingual-mpnet-base-v2| Assin | 0.743740222 | | paraphrase-multilingual-mpnet-base-v2| Assin2| 0.79831 | | paraphrase-multilingual-mpnet-base-v2| stsb_multi_mt pt| 0.83999 | | paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| Assin | 0.77641 | | paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| Assin2| 0.79831 | | paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| stsb_multi_mt pt| 0.84575 | ## Training Legal-SBERTimbau-large is based on Legal-BERTimbau-large whioch derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) Large. It was trained for Natural Language Inference (NLI). This was chosen due to the lack of Portuguese available data. In addition to that, it was submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin) and [assin2](https://huggingface.co/datasets/assin2) datasets. ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors If you use this work, please cite BERTimbau's work: ```bibtex @inproceedings{souza2020bertimbau, author = {F{\'a}bio Souza and Rodrigo Nogueira and Roberto Lotufo}, title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, year = {2020} } ```