ruggsea commited on
Commit
0ae6abb
·
verified ·
1 Parent(s): f2cbed5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -186
README.md CHANGED
@@ -1,199 +1,112 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - philosophy
5
+ - art
6
+ datasets:
7
+ - ruggsea/stanford-encyclopedia-of-philosophy_chat_multi_turn
8
+ language:
9
+ - en
10
+ base_model:
11
+ - meta-llama/Llama-3.1-8B-Instruct
12
+ pipeline_tag: text-generation
13
  ---
14
+ # Llama3-SEP-Chat: Philosophy Expert Assistant
15
 
16
+ This model is a LoRA-finetuned version of `meta-llama/Meta-Llama-3.1-8B-instruct` on a curated dataset of Stanford Encyclopedia of Philosophy (SEP) conversations. The model is designed to engage in philosophical discussions with a formal yet accessible tone, leveraging the comprehensive knowledge from SEP.
17
 
18
+ ## Model Description
19
 
20
+ The model was trained using direct finetuning on the instruct variant of Llama 3, preserving its native chat format and instruction-following capabilities while enhancing its philosophical expertise.
21
 
22
+ ### Training Dataset
23
 
24
+ The training data consists of multi-turn conversations derived from the Stanford Encyclopedia of Philosophy, formatted as chat interactions between a user and an assistant. The conversations maintain academic rigor while ensuring accessibility.
25
 
26
+ ### Chat Format
27
 
28
+ The model uses Llama 3's native chat format, which is automatically applied by the tokenizer. No additional tokens or formatting were added during finetuning.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  ## Training Details
31
 
32
+ ### Model Configuration
33
+ - Base Model: `meta-llama/Meta-Llama-3.1-8B-instruct`
34
+ - Training Type: LoRA (Low-Rank Adaptation)
35
+ - Quantization: 4-bit (NF4)
36
+ - Compute: Mixed Precision (bfloat16)
37
+
38
+ ### Training Hyperparameters
39
+ - Learning Rate: 2e-5
40
+ - Train Batch Size: 16
41
+ - Gradient Accumulation Steps: 2
42
+ - Effective Batch Size: 32
43
+ - Optimizer: paged_adamw_8bit
44
+ - Training Epochs: 5
45
+ - Warmup Ratio: 0.03
46
+ - LoRA Configuration:
47
+ - Rank: 256
48
+ - Alpha: 128
49
+ - Dropout: 0.05
50
+ - Target: all-linear layers
51
+
52
+ ### Framework Versions
53
+ - Transformers: latest
54
+ - PEFT: latest
55
+ - PyTorch: 2.1.0+cu121
56
+ - TRL: latest
57
+ - Accelerate: latest
58
+
59
+ ## Usage
60
+
61
+ The model can be used with the standard Hugging Face transformers library:
62
+
63
+ ```python
64
+ from transformers import AutoModelForCausalLM, AutoTokenizer
65
+ import torch
66
+
67
+ model_id = "ruggsea/Llama3.1-Instruct-SEP-Chat"
68
+
69
+ # Load model and tokenizer
70
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
71
+ model = AutoModelForCausalLM.from_pretrained(
72
+ model_id,
73
+ torch_dtype=torch.float16,
74
+ device_map="auto"
75
+ )
76
+
77
+ # Format your input using the chat template
78
+ messages = [
79
+ {"role": "user", "content": "What is the categorical imperative?"}
80
+ ]
81
+
82
+ # Apply the chat template
83
+ prompt = tokenizer.apply_chat_template(
84
+ messages,
85
+ tokenize=False
86
+ )
87
+
88
+ # Generate response
89
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
90
+ outputs = model.generate(
91
+ **inputs,
92
+ max_new_tokens=512,
93
+ do_sample=True,
94
+ temperature=0.7,
95
+ top_p=0.9,
96
+ repetition_penalty=1.2,
97
+ no_repeat_ngram_size=3,
98
+ )
99
+
100
+ response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
101
+ print(response)
102
+ ```
103
+
104
+ ## Limitations
105
+
106
+ - The model's knowledge is primarily focused on philosophical concepts and may not perform as well on general topics
107
+ - As with all language models, it may occasionally generate incorrect or inconsistent information
108
+ - The model inherits any limitations and biases present in the base Llama 3 model and the SEP dataset
109
+
110
+ ## License
111
+
112
+ This model is subject to the Meta Llama 3 license terms. Please refer to Meta's licensing for usage requirements and restrictions.