Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,112 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
|
|
5 |
|
6 |
-
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
###
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
-
###
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
### Training
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- philosophy
|
5 |
+
- art
|
6 |
+
datasets:
|
7 |
+
- ruggsea/stanford-encyclopedia-of-philosophy_chat_multi_turn
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
base_model:
|
11 |
+
- meta-llama/Llama-3.1-8B-Instruct
|
12 |
+
pipeline_tag: text-generation
|
13 |
---
|
14 |
+
# Llama3-SEP-Chat: Philosophy Expert Assistant
|
15 |
|
16 |
+
This model is a LoRA-finetuned version of `meta-llama/Meta-Llama-3.1-8B-instruct` on a curated dataset of Stanford Encyclopedia of Philosophy (SEP) conversations. The model is designed to engage in philosophical discussions with a formal yet accessible tone, leveraging the comprehensive knowledge from SEP.
|
17 |
|
18 |
+
## Model Description
|
19 |
|
20 |
+
The model was trained using direct finetuning on the instruct variant of Llama 3, preserving its native chat format and instruction-following capabilities while enhancing its philosophical expertise.
|
21 |
|
22 |
+
### Training Dataset
|
23 |
|
24 |
+
The training data consists of multi-turn conversations derived from the Stanford Encyclopedia of Philosophy, formatted as chat interactions between a user and an assistant. The conversations maintain academic rigor while ensuring accessibility.
|
25 |
|
26 |
+
### Chat Format
|
27 |
|
28 |
+
The model uses Llama 3's native chat format, which is automatically applied by the tokenizer. No additional tokens or formatting were added during finetuning.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
## Training Details
|
31 |
|
32 |
+
### Model Configuration
|
33 |
+
- Base Model: `meta-llama/Meta-Llama-3.1-8B-instruct`
|
34 |
+
- Training Type: LoRA (Low-Rank Adaptation)
|
35 |
+
- Quantization: 4-bit (NF4)
|
36 |
+
- Compute: Mixed Precision (bfloat16)
|
37 |
+
|
38 |
+
### Training Hyperparameters
|
39 |
+
- Learning Rate: 2e-5
|
40 |
+
- Train Batch Size: 16
|
41 |
+
- Gradient Accumulation Steps: 2
|
42 |
+
- Effective Batch Size: 32
|
43 |
+
- Optimizer: paged_adamw_8bit
|
44 |
+
- Training Epochs: 5
|
45 |
+
- Warmup Ratio: 0.03
|
46 |
+
- LoRA Configuration:
|
47 |
+
- Rank: 256
|
48 |
+
- Alpha: 128
|
49 |
+
- Dropout: 0.05
|
50 |
+
- Target: all-linear layers
|
51 |
+
|
52 |
+
### Framework Versions
|
53 |
+
- Transformers: latest
|
54 |
+
- PEFT: latest
|
55 |
+
- PyTorch: 2.1.0+cu121
|
56 |
+
- TRL: latest
|
57 |
+
- Accelerate: latest
|
58 |
+
|
59 |
+
## Usage
|
60 |
+
|
61 |
+
The model can be used with the standard Hugging Face transformers library:
|
62 |
+
|
63 |
+
```python
|
64 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
65 |
+
import torch
|
66 |
+
|
67 |
+
model_id = "ruggsea/Llama3.1-Instruct-SEP-Chat"
|
68 |
+
|
69 |
+
# Load model and tokenizer
|
70 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
71 |
+
model = AutoModelForCausalLM.from_pretrained(
|
72 |
+
model_id,
|
73 |
+
torch_dtype=torch.float16,
|
74 |
+
device_map="auto"
|
75 |
+
)
|
76 |
+
|
77 |
+
# Format your input using the chat template
|
78 |
+
messages = [
|
79 |
+
{"role": "user", "content": "What is the categorical imperative?"}
|
80 |
+
]
|
81 |
+
|
82 |
+
# Apply the chat template
|
83 |
+
prompt = tokenizer.apply_chat_template(
|
84 |
+
messages,
|
85 |
+
tokenize=False
|
86 |
+
)
|
87 |
+
|
88 |
+
# Generate response
|
89 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
90 |
+
outputs = model.generate(
|
91 |
+
**inputs,
|
92 |
+
max_new_tokens=512,
|
93 |
+
do_sample=True,
|
94 |
+
temperature=0.7,
|
95 |
+
top_p=0.9,
|
96 |
+
repetition_penalty=1.2,
|
97 |
+
no_repeat_ngram_size=3,
|
98 |
+
)
|
99 |
+
|
100 |
+
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
101 |
+
print(response)
|
102 |
+
```
|
103 |
+
|
104 |
+
## Limitations
|
105 |
+
|
106 |
+
- The model's knowledge is primarily focused on philosophical concepts and may not perform as well on general topics
|
107 |
+
- As with all language models, it may occasionally generate incorrect or inconsistent information
|
108 |
+
- The model inherits any limitations and biases present in the base Llama 3 model and the SEP dataset
|
109 |
+
|
110 |
+
## License
|
111 |
+
|
112 |
+
This model is subject to the Meta Llama 3 license terms. Please refer to Meta's licensing for usage requirements and restrictions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|