File size: 2,102 Bytes
b583491 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: LMPT_project
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# LMPT_project
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7558
- Bleu: 12.2835
- Gen Len: 44.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| No log | 1.0 | 13 | 1.9988 | 0.6722 | 37.35 |
| No log | 2.0 | 26 | 1.8930 | 0.7123 | 37.55 |
| No log | 3.0 | 39 | 1.8316 | 12.8352 | 36.55 |
| No log | 4.0 | 52 | 1.7920 | 17.2952 | 36.3 |
| No log | 5.0 | 65 | 1.7743 | 16.9058 | 36.8 |
| No log | 6.0 | 78 | 1.7652 | 17.4576 | 36.15 |
| No log | 7.0 | 91 | 1.7601 | 11.2528 | 44.4 |
| No log | 8.0 | 104 | 1.7578 | 12.2835 | 44.0 |
| No log | 9.0 | 117 | 1.7556 | 12.2835 | 44.0 |
| No log | 10.0 | 130 | 1.7558 | 12.2835 | 44.0 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|