--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer metrics: - accuracy model-index: - name: beit-base-patch16-224-pt22k-ft22k-finetuned-conspiracy_imagery_2 results: [] --- # beit-base-patch16-224-pt22k-ft22k-finetuned-conspiracy_imagery_2 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1099 - Accuracy: 0.5880 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.8533 | 0.9630 | 13 | 1.4568 | 0.4259 | | 1.4844 | 2.0 | 27 | 1.2233 | 0.5417 | | 1.1179 | 2.9630 | 40 | 1.1893 | 0.5509 | | 1.0325 | 4.0 | 54 | 1.1467 | 0.5833 | | 0.9755 | 4.9630 | 67 | 1.1300 | 0.5926 | | 0.8969 | 5.7778 | 78 | 1.1099 | 0.5880 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1