ryantaw's picture
End of training
b401c9f
|
raw
history blame
2.85 kB
metadata
license: mit
base_model: ryantaw/bert-small-finetuned
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert-small-finetuned-finetuned
    results: []

bert-small-finetuned-finetuned

This model is a fine-tuned version of ryantaw/bert-small-finetuned on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0767
  • Accuracy: 0.6119
  • F1 Score: 0.6156

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 86
  • eval_batch_size: 86
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Score
0.7125 1.0 18 1.0136 0.6011 0.5997
0.604 2.0 36 1.0198 0.6038 0.6058
0.5421 3.0 54 1.0517 0.6065 0.6068
0.4724 4.0 72 1.0767 0.6119 0.6156
0.42 5.0 90 1.1184 0.5768 0.5751
0.3823 6.0 108 1.1217 0.5876 0.5881
0.3312 7.0 126 1.1425 0.6065 0.6053
0.3045 8.0 144 1.1760 0.6065 0.6095
0.2662 9.0 162 1.2044 0.6065 0.6090
0.2403 10.0 180 1.2143 0.6011 0.6011
0.2308 11.0 198 1.2394 0.5903 0.5927
0.2053 12.0 216 1.2589 0.6038 0.6068
0.1808 13.0 234 1.2895 0.6065 0.6071
0.1599 14.0 252 1.3144 0.6065 0.6086
0.1497 15.0 270 1.3386 0.5930 0.5951
0.1383 16.0 288 1.3608 0.5903 0.5931
0.1321 17.0 306 1.3624 0.5876 0.5888
0.1183 18.0 324 1.3810 0.5930 0.5945
0.1196 19.0 342 1.3827 0.5903 0.5927
0.1181 20.0 360 1.3805 0.5903 0.5920

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1