ryefoxlime commited on
Commit
a583b5e
·
1 Parent(s): 54cac64

FER Working on RPi with ~30sec predict time

Browse files
FER/data_preprocessing/__pycache__/sam.cpython-311.pyc DELETED
Binary file (4.7 kB)
 
FER/detectfaces.py CHANGED
@@ -6,8 +6,10 @@ import time
6
  from PIL import Image
7
  from main import RecorderMeter1, RecorderMeter # noqa: F401
8
 
9
- # Define the path to the model checkpoint
10
- model_path = os.path.abspath(r"FER\models\checkpoints\raf-db-model_best.pth")
 
 
11
 
12
  # Determine the available device for model execution
13
  if torch.backends.mps.is_available():
@@ -86,9 +88,6 @@ def imagecapture(model):
86
  cv2.data.haarcascades + "haarcascade_frontalface_default.xml"
87
  ).detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5, minSize=(30, 30))
88
 
89
- # Display the current frame
90
- cv2.imshow("Webcam", frame)
91
-
92
  # If faces are detected, proceed with prediction
93
  if len(faces) > 0:
94
  currtimeimg = time.strftime("%H:%M:%S")
@@ -107,7 +106,7 @@ def imagecapture(model):
107
  starttime = time.strftime("%H:%M:%S")
108
  print(f"-->Prediction starting at {starttime}")
109
  # Perform emotion prediction
110
- predict(model, image_path=face_pil_image)
111
  # Record the prediction end time
112
  endtime = time.strftime("%H:%M:%S")
113
  print(f"-->Done prediction at {endtime}")
 
6
  from PIL import Image
7
  from main import RecorderMeter1, RecorderMeter # noqa: F401
8
 
9
+ script_dir = os.path.dirname(os.path.abspath(__file__))
10
+
11
+ # Construct the full path to the model file
12
+ model_path = os.path.join(script_dir,"models","checkpoints","raf-db-model_best.pth")
13
 
14
  # Determine the available device for model execution
15
  if torch.backends.mps.is_available():
 
88
  cv2.data.haarcascades + "haarcascade_frontalface_default.xml"
89
  ).detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5, minSize=(30, 30))
90
 
 
 
 
91
  # If faces are detected, proceed with prediction
92
  if len(faces) > 0:
93
  currtimeimg = time.strftime("%H:%M:%S")
 
106
  starttime = time.strftime("%H:%M:%S")
107
  print(f"-->Prediction starting at {starttime}")
108
  # Perform emotion prediction
109
+ face_detection(model, image_path=face_pil_image)
110
  # Record the prediction end time
111
  endtime = time.strftime("%H:%M:%S")
112
  print(f"-->Done prediction at {endtime}")
FER/models/PosterV2_7cls.py CHANGED
@@ -309,7 +309,7 @@ class pyramid_trans_expr2(nn.Module):
309
  mobilefacenet_path = os.path.join(
310
  script_dir, "pretrain", "mobilefacenet_model_best.pth.tar"
311
  )
312
- ir50_path = os.path.join(script_dir, r"pretrain\ir50.pth")
313
 
314
  print(mobilefacenet_path)
315
  face_landback_checkpoint = torch.load(
 
309
  mobilefacenet_path = os.path.join(
310
  script_dir, "pretrain", "mobilefacenet_model_best.pth.tar"
311
  )
312
+ ir50_path = os.path.join(script_dir, "pretrain","ir50.pth")
313
 
314
  print(mobilefacenet_path)
315
  face_landback_checkpoint = torch.load(
FER/models/checkpoints/raf-db-model_best.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d9bf1d0d88238966ce0d1a289a2bb5f927ec2fe635ef1ec4396c323028924701
3
- size 238971279
 
 
 
 
FER/prediction.py CHANGED
@@ -23,7 +23,7 @@ model = model.to(device)
23
  script_dir = os.path.dirname(os.path.abspath(__file__))
24
 
25
  # Construct the full path to the model file
26
- model_path = os.path.join(script_dir, r"models\checkpoints\raf-db-model_best.pth")
27
 
28
  image_arr = []
29
  for foldername, subfolders, filenames in os.walk("../FER/Images/"):
@@ -32,27 +32,6 @@ for foldername, subfolders, filenames in os.walk("../FER/Images/"):
32
  file_path = os.path.join(foldername, filename)
33
  image_arr.append(f"{file_path}")
34
 
35
-
36
- def main():
37
- if model_path is not None:
38
- if os.path.isfile(model_path):
39
- print("=> loading checkpoint '{}'".format(model_path))
40
- checkpoint = torch.load(model_path, map_location=device)
41
- best_acc = checkpoint["best_acc"]
42
- best_acc = best_acc.to()
43
- print(f"best_acc:{best_acc}")
44
- model.load_state_dict(checkpoint["state_dict"])
45
- print(
46
- "=> loaded checkpoint '{}' (epoch {})".format(
47
- model_path, checkpoint["epoch"]
48
- )
49
- )
50
- else:
51
- print("[!] prediction.py => no checkpoint found at '{}'".format(model_path))
52
- predict(model, image_path=image_arr)
53
- return
54
-
55
-
56
  def predict(model, image_path):
57
  from face_detection import face_detection
58
 
@@ -102,7 +81,3 @@ def predict(model, image_path):
102
  f"-->Image Path {image_path} [!] The predicted labels are {y_pred} and the label is {labels}"
103
  )
104
  return
105
-
106
-
107
- if __name__ == "__main__":
108
- main()
 
23
  script_dir = os.path.dirname(os.path.abspath(__file__))
24
 
25
  # Construct the full path to the model file
26
+ model_path = os.path.join(script_dir,"models","checkpoints","raf-db-model_best.pth")
27
 
28
  image_arr = []
29
  for foldername, subfolders, filenames in os.walk("../FER/Images/"):
 
32
  file_path = os.path.join(foldername, filename)
33
  image_arr.append(f"{file_path}")
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  def predict(model, image_path):
36
  from face_detection import face_detection
37
 
 
81
  f"-->Image Path {image_path} [!] The predicted labels are {y_pred} and the label is {labels}"
82
  )
83
  return
 
 
 
 
camera.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+
3
+ # initialize the camera
4
+ cap = cv2.VideoCapture(0, cv2.CAP_V4L2)
5
+
6
+ # capture a frame
7
+ ret, frame = cap.read()
8
+
9
+ # release the camera
10
+ cap.release()
11
+
12
+ # save the captured frame
13
+ cv2.imwrite('captured_image.jpg', frame)
14
+
15
+
pyproject.toml CHANGED
@@ -134,3 +134,6 @@ dependencies = [
134
 
135
  [[tool.uv.index]]
136
  url = "https://download.pytorch.org/whl/cu124"
 
 
 
 
134
 
135
  [[tool.uv.index]]
136
  url = "https://download.pytorch.org/whl/cu124"
137
+
138
+ [[tool.uv.index]]
139
+ url = "https://pypi.org/simple"