import ollama import chromadb import speech_recognition as sr import requests import pyttsx3 client = chromadb.Client() message_history = [ { 'id' : 1, 'prompt' : 'What is your name?', 'response' : 'My name is TADBot, a bot to help with short term remedial help for mental purposes. ' }, { 'id' : 2, 'prompt' : 'Bye', 'response' : 'Good to see you get better. Hopefully you reach out to me if you have any problems.' }, { 'id' : 3, 'prompt' : 'What is the essence of Life?', 'response' : 'The essence of life is to create what you want of yourself.' } ] convo = [] modelname = "ms" def create_vector_db(conversations): vector_db_name = 'conversations' try: client.delete_collection(vector_db_name) except ValueError as e: pass vector_db = client.create_collection(name=vector_db_name) for c in conversations: serialized_convo = 'prompt: ' + c["prompt"] + ' response: ' + c["response"] response = ollama.embeddings(model = "nomic-embed-text",prompt = serialized_convo) embedding = response["embedding"] vector_db.add(ids = [str(c['id'])], embeddings = [embedding], documents = [serialized_convo]) def stream_response(prompt): convo.append({'role': "user", 'content': prompt}) output = ollama.chat(model = modelname, messages = convo) response = output['message']['content'] print("TADBot: ") print(response) engine = pyttsx3.init() engine.say(response) engine.runAndWait() convo.append({'role': "assistant", 'content': response}) def retrieve_embeddings(prompt): response = ollama.embeddings(model = "nomic-embed-text", prompt = prompt) propmt_embedding = response['embedding'] vector_db = client.get_collection(name = 'conversations') results = vector_db.query(query_embeddings=[propmt_embedding], n_results = 1) best_embedding = results['documents'][0][0] return best_embedding create_vector_db(message_history) while True: r = sr.Recognizer() m = sr.Microphone() try: print("Say something!") with m as source: audio = r.listen(source) try: # for testing purposes, we're just using the default API key # to use another API key, use `r.recognize_google(audio, key="GOOGLE_SPEECH_RECOGNITION_API_KEY")` # instead of `r.recognize_google(audio)` prompt = r.recognize_google(audio) print("Tadbot thinks you said: " + prompt) except sr.UnknownValueError: print("Tadbot could not understand audio") except sr.RequestError as e: print("Could not request results from Google Speech Recognition service; {0}".format(e)) print("Please wait...") with m as source: r.adjust_for_ambient_noise(source) if prompt == "bye" or prompt == "Bye": print("TADBot: Hopefully I was able to help you out today. Have a Nice Day!") break """ context = retrieve_embeddings(prompt) prompt = prompt + "CONTEXT FROM EMBEDDING: " + context """ stream_response(prompt) except KeyboardInterrupt: pass