Commit
·
9baaab7
1
Parent(s):
b18dcaf
Initial commit
Browse files- README.md +37 -0
- config.json +1 -0
- lunarlander.zip +3 -0
- lunarlander/_stable_baselines3_version +1 -0
- lunarlander/data +99 -0
- lunarlander/policy.optimizer.pth +3 -0
- lunarlander/policy.pth +3 -0
- lunarlander/pytorch_variables.pth +3 -0
- lunarlander/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO-MlpPolicy
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 237.97 +/- 50.56
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO-MlpPolicy** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO-MlpPolicy** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a640a6e0670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a640a6e0700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a640a6e0790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a640a6e0820>", "_build": "<function ActorCriticPolicy._build at 0x7a640a6e08b0>", "forward": "<function ActorCriticPolicy.forward at 0x7a640a6e0940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a640a6e09d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a640a6e0a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7a640a6e0af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a640a6e0b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a640a6e0c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a640a6e0ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a640a6d5180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696081256221683401, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACDGMb6pqVa8Q/d1uzedtblaesM9+1iXOgAAgD8AAIA/ZoY5vNfbbLvDHVK77Tq8PL4HpDyVT4y5AACAPwAAgD/Qd7e+8rZAP0pcKL7hrA6/Fvghvsr4ojwAAAAAAAAAAAAPWz1SMvo88FIJO+Y+1707Gf48cCJQPAAAAAAAAAAArX6Dvr0sczx8HZ49KtjgOyYsJr5LbF09AACAPwAAgD+aV768K+A+PxLnNb1UFvu+hTepur2aFLwAAAAAAAAAACBkLL6pr268Em6BOqFznjgwSMs9jiynuQAAgD8AAIA/GqIkvf1TaT8twxK+G98Fv8w2Hrxm1oK8AAAAAAAAAAAObIi+dIjyPa0Wjj5Sbfi9dsmGPZn3A70AAAAAAAAAAKoKir6Nlow/2lPNvkrGKb/uyCO+YjdgvQAAAAAAAAAAU9U/Pq6Jirynz8c7ogYeuiCj8L0e2Py6AACAPwAAgD+2Tbq+/djEPqP7Pz4v96y+TTbLvRXeBT4AAAAAAAAAALMupD1q1KI/BSgCP+RG8r6aHZY9owdcPgAAAAAAAAAA+n4Kvlw3XLpq/W08wLeAuWtRFLuIF7I5AACAPwAAgD+6RBu+6DC7Pna3xr2VTcW+j+2svW3wibwAAAAAAAAAACCFFD6BE58/CMitPhqhBb+YDig+JDUOPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFJkt29tdmMAWyUTSABjAF0lEdAl/90LUkOZ3V9lChoBkdAccCIXTEzf2gHTQcBaAhHQJgCPNnoPkJ1fZQoaAZHQGyWEcjqv/1oB0voaAhHQJgDKuoxYaJ1fZQoaAZHQHAcnzH0btJoB0vtaAhHQJgFWaiKziV1fZQoaAZHQHIOSDujRD1oB0vPaAhHQJgFZu3trsV1fZQoaAZHQGTVJgb6xgRoB03oA2gIR0CYBgHCGetkdX2UKGgGR0Bv1g8GLUCraAdNCgFoCEdAmAbEQK8cuXV9lChoBkdAcEpc5bQkX2gHS+JoCEdAmAcGmtQsPXV9lChoBkdAcQ7FcIJJG2gHTRcBaAhHQJgHoc1fmcR1fZQoaAZHQHGX3pB5X2doB00EAWgIR0CYCQtqpLmIdX2UKGgGR0BiL+Nm16VuaAdN6ANoCEdAmGWF8LKFI3V9lChoBkdAcAJlPrOZ9mgHS/FoCEdAmGWIEOiFkHV9lChoBkdAcadXRw6ySmgHS+BoCEdAmGhLmlqJuXV9lChoBkdAbz0Ae7tiQWgHS9hoCEdAmGkUZBLPEHV9lChoBkdAYkLWGyon8mgHTegDaAhHQJhr+Xw9aEB1fZQoaAZHQHCH/OpsGgVoB0vkaAhHQJhsZ1Tzd1x1fZQoaAZHQHL6dtVJcxFoB0vbaAhHQJhsjaTOgQJ1fZQoaAZHQG8gfC66J69oB0v6aAhHQJhtSKUFB6d1fZQoaAZHQF3kifxtpEhoB03oA2gIR0CYbVuUliSadX2UKGgGR0BsPdT1kDp1aAdL6GgIR0CYbk5le4TcdX2UKGgGR0Bw3xqesgdPaAdL82gIR0CYb+IjGDL9dX2UKGgGR0BxT8E3bVSXaAdNKAFoCEdAmHAgAp8WsXV9lChoBkdAcQGh9srNGGgHS99oCEdAmHB/2PDHfnV9lChoBkdAcbkBikO7QWgHS+NoCEdAmHCjsyBTXXV9lChoBkdAcbeiCaqjrWgHTUoBaAhHQJhxIrAgxJx1fZQoaAZHQHBUUAksz2xoB00XAWgIR0CYdAreIl+mdX2UKGgGR0Bgel0eU6geaAdN6ANoCEdAmHVS4J/oaHV9lChoBkdAcZPa99MK1GgHS+loCEdAmHWp4GD+SHV9lChoBkdAcY6o3rD632gHTQkBaAhHQJh1/umaYu11fZQoaAZHQHE3MIAwPAhoB00FAWgIR0CYdrZqmCRPdX2UKGgGR0BwvzeN1hb4aAdNFAFoCEdAmHgvm9xp+XV9lChoBkdAcF5adtl7MWgHS/RoCEdAmHjb92ovSXV9lChoBkdAcRa8AaNuL2gHS/BoCEdAmHkRnezlcXV9lChoBkdAYj5Ux20Re2gHTegDaAhHQJh6MgU1yeZ1fZQoaAZHQHHTWCdz4lBoB00lAWgIR0CYenLRKHwgdX2UKGgGR0ByJwptrKvFaAdNDAFoCEdAmHrFHe7+UHV9lChoBkdAcR5eQuEmIGgHTSgBaAhHQJh+yeumrKh1fZQoaAZHQG9I/hMrVe9oB0vgaAhHQJh+2ruIAOt1fZQoaAZHQHB3curZJ05oB00DAWgIR0CYf2alDWsjdX2UKGgGR0BgNEUypJf6aAdN6ANoCEdAmIECwr1/UnV9lChoBkdAcOSGPPszEmgHS/poCEdAmIFgcT8HfXV9lChoBkdANULDAJswc2gHS9FoCEdAmIHiIxgy/XV9lChoBkdAcQ3YsunMuGgHTQwBaAhHQJiC6M0gr6N1fZQoaAZHQHEBBZuAI6doB0v4aAhHQJiD6tCAtnR1fZQoaAZHQHEhUQXhwVFoB00PAWgIR0CYhGreIl+mdX2UKGgGR0BvKjUmUnogaAdL6mgIR0CYh4Ktga3rdX2UKGgGR0Bzk/spobn6aAdL/GgIR0CYiEQ9zOopdX2UKGgGR0Bt4jDMvAXVaAdL1WgIR0CYiYaNuLrHdX2UKGgGR0BvrDNOdoWYaAdL6mgIR0CYiwaLn9vTdX2UKGgGR0Bt+PRPXTVlaAdL52gIR0CYjB42CNCJdX2UKGgGR0BwECAWi1zAaAdNYAFoCEdAmI0rNOdoWnV9lChoBkdAcBCEgGKQ72gHS+ZoCEdAmI3GO2iL23V9lChoBkdAcF7TV2A5JmgHS/toCEdAmI4adUbT+nV9lChoBkdAYFR1rZamoGgHTegDaAhHQJiQGeSSvDB1fZQoaAZHQHImMcMmWt5oB0vpaAhHQJiRN1GLDQ91fZQoaAZHQGSwJGWldkdoB03oA2gIR0CYkcKxs2vTdX2UKGgGR0BiObJlrdnCaAdN6ANoCEdAmJJOymhufnV9lChoBkdAb8qmLtNSImgHS9toCEdAmJKJCv5gxHV9lChoBkdAcHYk1/DtPmgHS/hoCEdAmJWCaiKziXV9lChoBkdAYFmu3+dbxGgHTegDaAhHQJiYAr1/UfB1fZQoaAZHQHKIybpeNT9oB00bAWgIR0CYmQ2criEQdX2UKGgGR0Bwj/z3AVO9aAdL9WgIR0CYmZv9cbBHdX2UKGgGR0BxwTUe+23KaAdLyWgIR0CYmcm1IAfddX2UKGgGR0BvULIeYD1XaAdL4mgIR0CYnPYI0IkadX2UKGgGR0Bwgguf29L6aAdL1GgIR0CYnQUrCm/GdX2UKGgGR0BxWj+jua4MaAdL5WgIR0CYn1YDTz/ZdX2UKGgGR0BkLRmEoOQRaAdN6ANoCEdAmJ/YGD+R5nV9lChoBkdAYeJPUrkKeGgHTegDaAhHQJigZ/PPcBV1fZQoaAZHQHCZTT8YQ8RoB0vXaAhHQJiiTFsHjZN1fZQoaAZHQHKQ8d5prUNoB00pAWgIR0CYovw/gR9PdX2UKGgGR0Bgy2Cwr1/UaAdN6ANoCEdAmKW4dIXj2nV9lChoBkdAN4tzr/sE7mgHS9poCEdAmKaXV5KODXV9lChoBkdAbUj9tMwlB2gHS/ZoCEdAmKanFo+OfnV9lChoBkdAcDB8an7522gHS/doCEdAmKfEdmxt53V9lChoBkdAcfbXqZ+hG2gHTQEBaAhHQJio7oicG1R1fZQoaAZHQHLPYtthuwZoB0vhaAhHQJiqOgqVhTh1fZQoaAZHQHCSElJHy3FoB0voaAhHQJiqq1Bt1p11fZQoaAZHQHBonUH6dlNoB0viaAhHQJisoo8ZDRd1fZQoaAZHQHB4MzVMEidoB0vsaAhHQJisqnIhhYx1fZQoaAZHQG8NI9cKPXFoB0v1aAhHQJisuGcnVoZ1fZQoaAZHQHABVj/dZaFoB0viaAhHQJit1GAkLQZ1fZQoaAZHQGGhCLdepn9oB03oA2gIR0CYr9R64UeudX2UKGgGR0Bw/XNliBoVaAdL8GgIR0CYsJ5jH4oJdX2UKGgGR0BvdRC+lCTmaAdL42gIR0CYsK2F36hydX2UKGgGR0BxR0c94eLfaAdL7GgIR0CYsREtdzGQdX2UKGgGR0Bvb+bkOqecaAdL5mgIR0CYsm9pAUtadX2UKGgGR0Bxao3Lmp2maAdL8WgIR0CYtDBzV+ZxdX2UKGgGR0BvOlPi1iOOaAdL7GgIR0CYthy3Td+HdX2UKGgGR0ByFP/S6UaAaAdNUwFoCEdAmLYs6BAfMnV9lChoBkdAcZRlLOAy22gHTQUBaAhHQJi3LZ8KG+N1fZQoaAZHQFn5r6tT1kFoB03oA2gIR0CYt+WXTmW/dX2UKGgGR0Bw2vaPCEYgaAdL/GgIR0CYuB4pc5bRdX2UKGgGR0Bw6b/XGwRoaAdL92gIR0CYuokrf+CLdX2UKGgGR0BxnWzu4PPLaAdNDAFoCEdAmLqfDLr5ZnV9lChoBkdAcRZBf8dgfGgHS/loCEdAmLsJR8+ianV9lChoBkdAboZBt1p0wWgHS/BoCEdAmLv3pwCKaXV9lChoBkdAX09LSNOuaGgHTegDaAhHQJi8GZWq95B1fZQoaAZHQHAH0UTL4etoB00iAWgIR0CYvCqrR0EHdX2UKGgGR0BgwR6OYIBzaAdN6ANoCEdAmLyJZSvTw3V9lChoBkdAcQnJ53Tuv2gHS/RoCEdAmL1YXfqHGnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
lunarlander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a0432ddbbc153c6c344f69b656977b3ebff080e448559721d2e340039b01ae2
|
3 |
+
size 146682
|
lunarlander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
lunarlander/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a640a6e0670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a640a6e0700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a640a6e0790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a640a6e0820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a640a6e08b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a640a6e0940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a640a6e09d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a640a6e0a60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a640a6e0af0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a640a6e0b80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a640a6e0c10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a640a6e0ca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a640a6d5180>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1696081256221683401,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACDGMb6pqVa8Q/d1uzedtblaesM9+1iXOgAAgD8AAIA/ZoY5vNfbbLvDHVK77Tq8PL4HpDyVT4y5AACAPwAAgD/Qd7e+8rZAP0pcKL7hrA6/Fvghvsr4ojwAAAAAAAAAAAAPWz1SMvo88FIJO+Y+1707Gf48cCJQPAAAAAAAAAAArX6Dvr0sczx8HZ49KtjgOyYsJr5LbF09AACAPwAAgD+aV768K+A+PxLnNb1UFvu+hTepur2aFLwAAAAAAAAAACBkLL6pr268Em6BOqFznjgwSMs9jiynuQAAgD8AAIA/GqIkvf1TaT8twxK+G98Fv8w2Hrxm1oK8AAAAAAAAAAAObIi+dIjyPa0Wjj5Sbfi9dsmGPZn3A70AAAAAAAAAAKoKir6Nlow/2lPNvkrGKb/uyCO+YjdgvQAAAAAAAAAAU9U/Pq6Jirynz8c7ogYeuiCj8L0e2Py6AACAPwAAgD+2Tbq+/djEPqP7Pz4v96y+TTbLvRXeBT4AAAAAAAAAALMupD1q1KI/BSgCP+RG8r6aHZY9owdcPgAAAAAAAAAA+n4Kvlw3XLpq/W08wLeAuWtRFLuIF7I5AACAPwAAgD+6RBu+6DC7Pna3xr2VTcW+j+2svW3wibwAAAAAAAAAACCFFD6BE58/CMitPhqhBb+YDig+JDUOPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVCwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFJkt29tdmMAWyUTSABjAF0lEdAl/90LUkOZ3V9lChoBkdAccCIXTEzf2gHTQcBaAhHQJgCPNnoPkJ1fZQoaAZHQGyWEcjqv/1oB0voaAhHQJgDKuoxYaJ1fZQoaAZHQHAcnzH0btJoB0vtaAhHQJgFWaiKziV1fZQoaAZHQHIOSDujRD1oB0vPaAhHQJgFZu3trsV1fZQoaAZHQGTVJgb6xgRoB03oA2gIR0CYBgHCGetkdX2UKGgGR0Bv1g8GLUCraAdNCgFoCEdAmAbEQK8cuXV9lChoBkdAcEpc5bQkX2gHS+JoCEdAmAcGmtQsPXV9lChoBkdAcQ7FcIJJG2gHTRcBaAhHQJgHoc1fmcR1fZQoaAZHQHGX3pB5X2doB00EAWgIR0CYCQtqpLmIdX2UKGgGR0BiL+Nm16VuaAdN6ANoCEdAmGWF8LKFI3V9lChoBkdAcAJlPrOZ9mgHS/FoCEdAmGWIEOiFkHV9lChoBkdAcadXRw6ySmgHS+BoCEdAmGhLmlqJuXV9lChoBkdAbz0Ae7tiQWgHS9hoCEdAmGkUZBLPEHV9lChoBkdAYkLWGyon8mgHTegDaAhHQJhr+Xw9aEB1fZQoaAZHQHCH/OpsGgVoB0vkaAhHQJhsZ1Tzd1x1fZQoaAZHQHL6dtVJcxFoB0vbaAhHQJhsjaTOgQJ1fZQoaAZHQG8gfC66J69oB0v6aAhHQJhtSKUFB6d1fZQoaAZHQF3kifxtpEhoB03oA2gIR0CYbVuUliSadX2UKGgGR0BsPdT1kDp1aAdL6GgIR0CYbk5le4TcdX2UKGgGR0Bw3xqesgdPaAdL82gIR0CYb+IjGDL9dX2UKGgGR0BxT8E3bVSXaAdNKAFoCEdAmHAgAp8WsXV9lChoBkdAcQGh9srNGGgHS99oCEdAmHB/2PDHfnV9lChoBkdAcbkBikO7QWgHS+NoCEdAmHCjsyBTXXV9lChoBkdAcbeiCaqjrWgHTUoBaAhHQJhxIrAgxJx1fZQoaAZHQHBUUAksz2xoB00XAWgIR0CYdAreIl+mdX2UKGgGR0Bgel0eU6geaAdN6ANoCEdAmHVS4J/oaHV9lChoBkdAcZPa99MK1GgHS+loCEdAmHWp4GD+SHV9lChoBkdAcY6o3rD632gHTQkBaAhHQJh1/umaYu11fZQoaAZHQHE3MIAwPAhoB00FAWgIR0CYdrZqmCRPdX2UKGgGR0BwvzeN1hb4aAdNFAFoCEdAmHgvm9xp+XV9lChoBkdAcF5adtl7MWgHS/RoCEdAmHjb92ovSXV9lChoBkdAcRa8AaNuL2gHS/BoCEdAmHkRnezlcXV9lChoBkdAYj5Ux20Re2gHTegDaAhHQJh6MgU1yeZ1fZQoaAZHQHHTWCdz4lBoB00lAWgIR0CYenLRKHwgdX2UKGgGR0ByJwptrKvFaAdNDAFoCEdAmHrFHe7+UHV9lChoBkdAcR5eQuEmIGgHTSgBaAhHQJh+yeumrKh1fZQoaAZHQG9I/hMrVe9oB0vgaAhHQJh+2ruIAOt1fZQoaAZHQHB3curZJ05oB00DAWgIR0CYf2alDWsjdX2UKGgGR0BgNEUypJf6aAdN6ANoCEdAmIECwr1/UnV9lChoBkdAcOSGPPszEmgHS/poCEdAmIFgcT8HfXV9lChoBkdANULDAJswc2gHS9FoCEdAmIHiIxgy/XV9lChoBkdAcQ3YsunMuGgHTQwBaAhHQJiC6M0gr6N1fZQoaAZHQHEBBZuAI6doB0v4aAhHQJiD6tCAtnR1fZQoaAZHQHEhUQXhwVFoB00PAWgIR0CYhGreIl+mdX2UKGgGR0BvKjUmUnogaAdL6mgIR0CYh4Ktga3rdX2UKGgGR0Bzk/spobn6aAdL/GgIR0CYiEQ9zOopdX2UKGgGR0Bt4jDMvAXVaAdL1WgIR0CYiYaNuLrHdX2UKGgGR0BvrDNOdoWYaAdL6mgIR0CYiwaLn9vTdX2UKGgGR0Bt+PRPXTVlaAdL52gIR0CYjB42CNCJdX2UKGgGR0BwECAWi1zAaAdNYAFoCEdAmI0rNOdoWnV9lChoBkdAcBCEgGKQ72gHS+ZoCEdAmI3GO2iL23V9lChoBkdAcF7TV2A5JmgHS/toCEdAmI4adUbT+nV9lChoBkdAYFR1rZamoGgHTegDaAhHQJiQGeSSvDB1fZQoaAZHQHImMcMmWt5oB0vpaAhHQJiRN1GLDQ91fZQoaAZHQGSwJGWldkdoB03oA2gIR0CYkcKxs2vTdX2UKGgGR0BiObJlrdnCaAdN6ANoCEdAmJJOymhufnV9lChoBkdAb8qmLtNSImgHS9toCEdAmJKJCv5gxHV9lChoBkdAcHYk1/DtPmgHS/hoCEdAmJWCaiKziXV9lChoBkdAYFmu3+dbxGgHTegDaAhHQJiYAr1/UfB1fZQoaAZHQHKIybpeNT9oB00bAWgIR0CYmQ2criEQdX2UKGgGR0Bwj/z3AVO9aAdL9WgIR0CYmZv9cbBHdX2UKGgGR0BxwTUe+23KaAdLyWgIR0CYmcm1IAfddX2UKGgGR0BvULIeYD1XaAdL4mgIR0CYnPYI0IkadX2UKGgGR0Bwgguf29L6aAdL1GgIR0CYnQUrCm/GdX2UKGgGR0BxWj+jua4MaAdL5WgIR0CYn1YDTz/ZdX2UKGgGR0BkLRmEoOQRaAdN6ANoCEdAmJ/YGD+R5nV9lChoBkdAYeJPUrkKeGgHTegDaAhHQJigZ/PPcBV1fZQoaAZHQHCZTT8YQ8RoB0vXaAhHQJiiTFsHjZN1fZQoaAZHQHKQ8d5prUNoB00pAWgIR0CYovw/gR9PdX2UKGgGR0Bgy2Cwr1/UaAdN6ANoCEdAmKW4dIXj2nV9lChoBkdAN4tzr/sE7mgHS9poCEdAmKaXV5KODXV9lChoBkdAbUj9tMwlB2gHS/ZoCEdAmKanFo+OfnV9lChoBkdAcDB8an7522gHS/doCEdAmKfEdmxt53V9lChoBkdAcfbXqZ+hG2gHTQEBaAhHQJio7oicG1R1fZQoaAZHQHLPYtthuwZoB0vhaAhHQJiqOgqVhTh1fZQoaAZHQHCSElJHy3FoB0voaAhHQJiqq1Bt1p11fZQoaAZHQHBonUH6dlNoB0viaAhHQJisoo8ZDRd1fZQoaAZHQHB4MzVMEidoB0vsaAhHQJisqnIhhYx1fZQoaAZHQG8NI9cKPXFoB0v1aAhHQJisuGcnVoZ1fZQoaAZHQHABVj/dZaFoB0viaAhHQJit1GAkLQZ1fZQoaAZHQGGhCLdepn9oB03oA2gIR0CYr9R64UeudX2UKGgGR0Bw/XNliBoVaAdL8GgIR0CYsJ5jH4oJdX2UKGgGR0BvdRC+lCTmaAdL42gIR0CYsK2F36hydX2UKGgGR0BxR0c94eLfaAdL7GgIR0CYsREtdzGQdX2UKGgGR0Bvb+bkOqecaAdL5mgIR0CYsm9pAUtadX2UKGgGR0Bxao3Lmp2maAdL8WgIR0CYtDBzV+ZxdX2UKGgGR0BvOlPi1iOOaAdL7GgIR0CYthy3Td+HdX2UKGgGR0ByFP/S6UaAaAdNUwFoCEdAmLYs6BAfMnV9lChoBkdAcZRlLOAy22gHTQUBaAhHQJi3LZ8KG+N1fZQoaAZHQFn5r6tT1kFoB03oA2gIR0CYt+WXTmW/dX2UKGgGR0Bw2vaPCEYgaAdL/GgIR0CYuB4pc5bRdX2UKGgGR0Bw6b/XGwRoaAdL92gIR0CYuokrf+CLdX2UKGgGR0BxnWzu4PPLaAdNDAFoCEdAmLqfDLr5ZnV9lChoBkdAcRZBf8dgfGgHS/loCEdAmLsJR8+ianV9lChoBkdAboZBt1p0wWgHS/BoCEdAmLv3pwCKaXV9lChoBkdAX09LSNOuaGgHTegDaAhHQJi8GZWq95B1fZQoaAZHQHAH0UTL4etoB00iAWgIR0CYvCqrR0EHdX2UKGgGR0BgwR6OYIBzaAdN6ANoCEdAmLyJZSvTw3V9lChoBkdAcQnJ53Tuv2gHS/RoCEdAmL1YXfqHGnVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
lunarlander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4d75dc226442741a44b51a6dcd649f6866d478ef5fac695dd7d49e8b732f182
|
3 |
+
size 87929
|
lunarlander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b84b297a1cdcf4f9b8c598a0baeb360af0148165f1a5fdf1504e077fe6cdfee
|
3 |
+
size 43329
|
lunarlander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunarlander/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (185 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 237.97020639999997, "std_reward": 50.55682847242076, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-30T14:24:55.472426"}
|