Update README.md
Browse files
README.md
CHANGED
@@ -6,4 +6,56 @@ language:
|
|
6 |
- en
|
7 |
library_name: transformers
|
8 |
pipeline_tag: text2text-generation
|
9 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
- en
|
7 |
library_name: transformers
|
8 |
pipeline_tag: text2text-generation
|
9 |
+
---
|
10 |
+
|
11 |
+
## Model Description
|
12 |
+
|
13 |
+
This is the model presented in the paper "Exploring Methods for Cross-lingual Text Style Transfer: The Case of Text Detoxification".
|
14 |
+
|
15 |
+
The model is based on [mBART-large-50](https://huggingface.co/facebook/mbart-large-50) and trained on two parallel detoxification corpora: [ParaDetox](https://huggingface.co/datasets/s-nlp/paradetox) and [RuDetox](https://github.com/s-nlp/russe_detox_2022/tree/main/data). More details about this model are in the paper.
|
16 |
+
|
17 |
+
|
18 |
+
## Usage
|
19 |
+
|
20 |
+
1. Model loading.
|
21 |
+
```python
|
22 |
+
from transformers import MBartForConditionalGeneration, AutoTokenizer
|
23 |
+
|
24 |
+
model = MBartForConditionalGeneration.from_pretrained("s-nlp/mBART_EN_RU").cuda()
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50")
|
26 |
+
|
27 |
+
```
|
28 |
+
|
29 |
+
2. Detoxification utility.
|
30 |
+
```python
|
31 |
+
def paraphrase(text, model, tokenizer, n=None, max_length="auto", beams=3):
|
32 |
+
texts = [text] if isinstance(text, str) else text
|
33 |
+
inputs = tokenizer(texts, return_tensors="pt", padding=True)["input_ids"].to(
|
34 |
+
model.device
|
35 |
+
)
|
36 |
+
if max_length == "auto":
|
37 |
+
max_length = inputs.shape[1] + 10
|
38 |
+
|
39 |
+
result = model.generate(
|
40 |
+
inputs,
|
41 |
+
num_return_sequences=n or 1,
|
42 |
+
do_sample=True,
|
43 |
+
temperature=1.0,
|
44 |
+
repetition_penalty=10.0,
|
45 |
+
max_length=max_length,
|
46 |
+
min_length=int(0.5 * max_length),
|
47 |
+
num_beams=beams,
|
48 |
+
forced_bos_token_id=tokenizer.lang_code_to_id[tokenizer.tgt_lang]
|
49 |
+
)
|
50 |
+
texts = [tokenizer.decode(r, skip_special_tokens=True) for r in result]
|
51 |
+
|
52 |
+
if not n and isinstance(text, str):
|
53 |
+
return texts[0]
|
54 |
+
return texts
|
55 |
+
```
|
56 |
+
|
57 |
+
|
58 |
+
## Citation
|
59 |
+
|
60 |
+
|
61 |
+
TBD
|