s65b40 commited on
Commit
b0a7858
1 Parent(s): 45b7b31

Upload 12 files

Browse files
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/users7/hcwang/2023/medchat/model/chatglm/original",
3
+ "architectures": [
4
+ "ChatGLMForConditionalGeneration"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_chatglm.ChatGLMConfig",
8
+ "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
9
+ "AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"
10
+ },
11
+ "bos_token_id": 150004,
12
+ "eos_token_id": 150005,
13
+ "hidden_size": 4096,
14
+ "inner_hidden_size": 16384,
15
+ "layernorm_epsilon": 1e-05,
16
+ "max_sequence_length": 2048,
17
+ "model_type": "chatglm",
18
+ "num_attention_heads": 32,
19
+ "num_layers": 28,
20
+ "pad_token_id": 0,
21
+ "position_encoding_2d": true,
22
+ "torch_dtype": "float16",
23
+ "transformers_version": "4.27.1",
24
+ "use_cache": false,
25
+ "vocab_size": 150528
26
+ }
configuration_chatglm.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ ChatGLM model configuration """
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers.utils import logging
5
+
6
+ logger = logging.get_logger(__name__)
7
+
8
+
9
+ class ChatGLMConfig(PretrainedConfig):
10
+ r"""
11
+ This is the configuration class to store the configuration of a [`~ChatGLMModel`].
12
+ It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
13
+ architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
14
+ the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.
15
+
16
+ Configuration objects inherit from [`PretrainedConfig`] and can be used
17
+ to control the model outputs. Read the documentation from [`PretrainedConfig`]
18
+ for more information.
19
+
20
+
21
+ Args:
22
+ vocab_size (`int`, *optional*, defaults to 150528):
23
+ Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
24
+ `inputs_ids` passed when calling [`~ChatGLMModel`] or
25
+ [`~TFChatGLMModel`].
26
+ hidden_size (`int`, *optional*, defaults to 4096):
27
+ Dimension of the encoder layers and the pooler layer.
28
+ num_hidden_layers (`int`, *optional*, defaults to 28):
29
+ Number of hidden layers in the Transformer encoder.
30
+ num_attention_heads (`int`, *optional*, defaults to 32):
31
+ Number of attention heads for each attention layer in the Transformer encoder.
32
+ inner_hidden_size (`int`, *optional*, defaults to 16384):
33
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
34
+ max_sequence_length (`int`, *optional*, defaults to 512):
35
+ The maximum sequence length that this model might ever be used with.
36
+ Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
37
+ layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
38
+ The epsilon used by the layer normalization layers.
39
+ use_cache (`bool`, *optional*, defaults to `True`):
40
+ Whether the model should return the last key/values attentions (not used by all models).
41
+ Example:
42
+
43
+ ```python
44
+ >>> from configuration_chatglm import ChatGLMConfig
45
+ >>> from modeling_chatglm import ChatGLMModel
46
+
47
+ >>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
48
+ >>> configuration = ChatGLMConfig()
49
+
50
+ >>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
51
+ >>> model = ChatGLMModel(configuration)
52
+
53
+ >>> # Accessing the model configuration
54
+ >>> configuration = model.config
55
+ ```
56
+ """
57
+ model_type = "chatglm"
58
+
59
+ def __init__(
60
+ self,
61
+ vocab_size=150528,
62
+ hidden_size=4096,
63
+ num_layers=28,
64
+ num_attention_heads=32,
65
+ layernorm_epsilon=1e-5,
66
+ use_cache=False,
67
+ bos_token_id=150004,
68
+ eos_token_id=150005,
69
+ pad_token_id=0,
70
+ max_sequence_length=2048,
71
+ inner_hidden_size=16384,
72
+ position_encoding_2d=True,
73
+ **kwargs
74
+ ):
75
+ self.num_layers = num_layers
76
+ self.vocab_size = vocab_size
77
+ self.hidden_size = hidden_size
78
+ self.num_attention_heads = num_attention_heads
79
+ self.max_sequence_length = max_sequence_length
80
+ self.layernorm_epsilon = layernorm_epsilon
81
+ self.inner_hidden_size = inner_hidden_size
82
+ self.use_cache = use_cache
83
+ self.bos_token_id = bos_token_id
84
+ self.eos_token_id = eos_token_id
85
+ self.pad_token_id = pad_token_id
86
+ self.position_encoding_2d = position_encoding_2d
87
+ super().__init__(
88
+ pad_token_id=pad_token_id,
89
+ bos_token_id=bos_token_id,
90
+ eos_token_id=eos_token_id,
91
+ **kwargs
92
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 150004,
4
+ "eos_token_id": 150005,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.27.1"
7
+ }
ice_text.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99871e0c85db81ad7af1028854fd091cd5778c8414ae9d94bbbc10d02c831c21
3
+ size 2699926
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13743539968
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "transformer.final_layernorm.bias": "pytorch_model-00002-of-00002.bin",
8
+ "transformer.final_layernorm.weight": "pytorch_model-00002-of-00002.bin",
9
+ "transformer.layers.0.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
10
+ "transformer.layers.0.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
11
+ "transformer.layers.0.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
12
+ "transformer.layers.0.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
13
+ "transformer.layers.0.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
14
+ "transformer.layers.0.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
15
+ "transformer.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
16
+ "transformer.layers.0.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
17
+ "transformer.layers.0.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
18
+ "transformer.layers.0.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
19
+ "transformer.layers.0.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
20
+ "transformer.layers.0.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
21
+ "transformer.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
22
+ "transformer.layers.1.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
23
+ "transformer.layers.1.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
24
+ "transformer.layers.1.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
25
+ "transformer.layers.1.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
26
+ "transformer.layers.1.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
27
+ "transformer.layers.1.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
28
+ "transformer.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
29
+ "transformer.layers.1.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
30
+ "transformer.layers.1.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
31
+ "transformer.layers.1.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
32
+ "transformer.layers.1.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
33
+ "transformer.layers.1.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
34
+ "transformer.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
35
+ "transformer.layers.10.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
36
+ "transformer.layers.10.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
37
+ "transformer.layers.10.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
38
+ "transformer.layers.10.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
39
+ "transformer.layers.10.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
40
+ "transformer.layers.10.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
41
+ "transformer.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
42
+ "transformer.layers.10.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
43
+ "transformer.layers.10.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
44
+ "transformer.layers.10.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
45
+ "transformer.layers.10.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
46
+ "transformer.layers.10.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
47
+ "transformer.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
48
+ "transformer.layers.11.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
49
+ "transformer.layers.11.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
50
+ "transformer.layers.11.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
51
+ "transformer.layers.11.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
52
+ "transformer.layers.11.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
53
+ "transformer.layers.11.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
54
+ "transformer.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
55
+ "transformer.layers.11.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
56
+ "transformer.layers.11.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
57
+ "transformer.layers.11.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
58
+ "transformer.layers.11.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
59
+ "transformer.layers.11.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
60
+ "transformer.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
61
+ "transformer.layers.12.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
62
+ "transformer.layers.12.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
63
+ "transformer.layers.12.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
64
+ "transformer.layers.12.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
65
+ "transformer.layers.12.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
66
+ "transformer.layers.12.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
67
+ "transformer.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
68
+ "transformer.layers.12.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
69
+ "transformer.layers.12.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
70
+ "transformer.layers.12.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
71
+ "transformer.layers.12.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
72
+ "transformer.layers.12.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
73
+ "transformer.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
74
+ "transformer.layers.13.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
75
+ "transformer.layers.13.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
76
+ "transformer.layers.13.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
77
+ "transformer.layers.13.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
78
+ "transformer.layers.13.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
79
+ "transformer.layers.13.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
80
+ "transformer.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
81
+ "transformer.layers.13.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
82
+ "transformer.layers.13.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
83
+ "transformer.layers.13.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
84
+ "transformer.layers.13.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
85
+ "transformer.layers.13.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
86
+ "transformer.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
87
+ "transformer.layers.14.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
88
+ "transformer.layers.14.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
89
+ "transformer.layers.14.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
90
+ "transformer.layers.14.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
91
+ "transformer.layers.14.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
92
+ "transformer.layers.14.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
93
+ "transformer.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
94
+ "transformer.layers.14.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
95
+ "transformer.layers.14.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
96
+ "transformer.layers.14.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
97
+ "transformer.layers.14.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
98
+ "transformer.layers.14.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
99
+ "transformer.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
100
+ "transformer.layers.15.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
101
+ "transformer.layers.15.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
102
+ "transformer.layers.15.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
103
+ "transformer.layers.15.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
104
+ "transformer.layers.15.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
105
+ "transformer.layers.15.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
106
+ "transformer.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
107
+ "transformer.layers.15.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
108
+ "transformer.layers.15.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
109
+ "transformer.layers.15.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
110
+ "transformer.layers.15.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
111
+ "transformer.layers.15.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
112
+ "transformer.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
113
+ "transformer.layers.16.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
114
+ "transformer.layers.16.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
115
+ "transformer.layers.16.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
116
+ "transformer.layers.16.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
117
+ "transformer.layers.16.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
118
+ "transformer.layers.16.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
119
+ "transformer.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
120
+ "transformer.layers.16.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
121
+ "transformer.layers.16.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
122
+ "transformer.layers.16.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
123
+ "transformer.layers.16.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
124
+ "transformer.layers.16.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
125
+ "transformer.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
126
+ "transformer.layers.17.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
127
+ "transformer.layers.17.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
128
+ "transformer.layers.17.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
129
+ "transformer.layers.17.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
130
+ "transformer.layers.17.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
131
+ "transformer.layers.17.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
132
+ "transformer.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
133
+ "transformer.layers.17.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
134
+ "transformer.layers.17.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
135
+ "transformer.layers.17.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
136
+ "transformer.layers.17.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
137
+ "transformer.layers.17.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
138
+ "transformer.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
139
+ "transformer.layers.18.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
140
+ "transformer.layers.18.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
141
+ "transformer.layers.18.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
142
+ "transformer.layers.18.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
143
+ "transformer.layers.18.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
144
+ "transformer.layers.18.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
145
+ "transformer.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
146
+ "transformer.layers.18.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
147
+ "transformer.layers.18.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
148
+ "transformer.layers.18.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
149
+ "transformer.layers.18.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
150
+ "transformer.layers.18.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
151
+ "transformer.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
152
+ "transformer.layers.19.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
153
+ "transformer.layers.19.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
154
+ "transformer.layers.19.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
155
+ "transformer.layers.19.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
156
+ "transformer.layers.19.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
157
+ "transformer.layers.19.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
158
+ "transformer.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
159
+ "transformer.layers.19.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
160
+ "transformer.layers.19.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
161
+ "transformer.layers.19.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
162
+ "transformer.layers.19.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
163
+ "transformer.layers.19.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
164
+ "transformer.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
165
+ "transformer.layers.2.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
166
+ "transformer.layers.2.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
167
+ "transformer.layers.2.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
168
+ "transformer.layers.2.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
169
+ "transformer.layers.2.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
170
+ "transformer.layers.2.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
171
+ "transformer.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
172
+ "transformer.layers.2.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
173
+ "transformer.layers.2.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
174
+ "transformer.layers.2.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
175
+ "transformer.layers.2.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
176
+ "transformer.layers.2.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
177
+ "transformer.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
178
+ "transformer.layers.20.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
179
+ "transformer.layers.20.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
180
+ "transformer.layers.20.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
181
+ "transformer.layers.20.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
182
+ "transformer.layers.20.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
183
+ "transformer.layers.20.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
184
+ "transformer.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
185
+ "transformer.layers.20.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
186
+ "transformer.layers.20.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
187
+ "transformer.layers.20.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
188
+ "transformer.layers.20.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
189
+ "transformer.layers.20.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
190
+ "transformer.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
191
+ "transformer.layers.21.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
192
+ "transformer.layers.21.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
193
+ "transformer.layers.21.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
194
+ "transformer.layers.21.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
195
+ "transformer.layers.21.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
196
+ "transformer.layers.21.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
197
+ "transformer.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
198
+ "transformer.layers.21.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
199
+ "transformer.layers.21.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
200
+ "transformer.layers.21.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
201
+ "transformer.layers.21.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
202
+ "transformer.layers.21.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
203
+ "transformer.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
204
+ "transformer.layers.22.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
205
+ "transformer.layers.22.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
206
+ "transformer.layers.22.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
207
+ "transformer.layers.22.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
208
+ "transformer.layers.22.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
209
+ "transformer.layers.22.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
210
+ "transformer.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
211
+ "transformer.layers.22.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
212
+ "transformer.layers.22.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
213
+ "transformer.layers.22.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
214
+ "transformer.layers.22.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
215
+ "transformer.layers.22.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
216
+ "transformer.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
217
+ "transformer.layers.23.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
218
+ "transformer.layers.23.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
219
+ "transformer.layers.23.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
220
+ "transformer.layers.23.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
221
+ "transformer.layers.23.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
222
+ "transformer.layers.23.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
223
+ "transformer.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
224
+ "transformer.layers.23.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
225
+ "transformer.layers.23.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
226
+ "transformer.layers.23.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
227
+ "transformer.layers.23.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
228
+ "transformer.layers.23.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
229
+ "transformer.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
230
+ "transformer.layers.24.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
231
+ "transformer.layers.24.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
232
+ "transformer.layers.24.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
233
+ "transformer.layers.24.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
234
+ "transformer.layers.24.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
235
+ "transformer.layers.24.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
236
+ "transformer.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
237
+ "transformer.layers.24.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
238
+ "transformer.layers.24.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
239
+ "transformer.layers.24.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
240
+ "transformer.layers.24.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
241
+ "transformer.layers.24.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
242
+ "transformer.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
243
+ "transformer.layers.25.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
244
+ "transformer.layers.25.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
245
+ "transformer.layers.25.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
246
+ "transformer.layers.25.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
247
+ "transformer.layers.25.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
248
+ "transformer.layers.25.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
249
+ "transformer.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
250
+ "transformer.layers.25.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
251
+ "transformer.layers.25.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
252
+ "transformer.layers.25.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
253
+ "transformer.layers.25.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
254
+ "transformer.layers.25.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
255
+ "transformer.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
256
+ "transformer.layers.26.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
257
+ "transformer.layers.26.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
258
+ "transformer.layers.26.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
259
+ "transformer.layers.26.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
260
+ "transformer.layers.26.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
261
+ "transformer.layers.26.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
262
+ "transformer.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
263
+ "transformer.layers.26.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
264
+ "transformer.layers.26.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
265
+ "transformer.layers.26.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
266
+ "transformer.layers.26.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
267
+ "transformer.layers.26.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
268
+ "transformer.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
269
+ "transformer.layers.27.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
270
+ "transformer.layers.27.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
271
+ "transformer.layers.27.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
272
+ "transformer.layers.27.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
273
+ "transformer.layers.27.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
274
+ "transformer.layers.27.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
275
+ "transformer.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
276
+ "transformer.layers.27.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
277
+ "transformer.layers.27.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
278
+ "transformer.layers.27.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
279
+ "transformer.layers.27.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
280
+ "transformer.layers.27.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
281
+ "transformer.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
282
+ "transformer.layers.3.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
283
+ "transformer.layers.3.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
284
+ "transformer.layers.3.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
285
+ "transformer.layers.3.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
286
+ "transformer.layers.3.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
287
+ "transformer.layers.3.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
288
+ "transformer.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
289
+ "transformer.layers.3.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
290
+ "transformer.layers.3.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
291
+ "transformer.layers.3.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
292
+ "transformer.layers.3.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
293
+ "transformer.layers.3.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
294
+ "transformer.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
295
+ "transformer.layers.4.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
296
+ "transformer.layers.4.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
297
+ "transformer.layers.4.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
298
+ "transformer.layers.4.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
299
+ "transformer.layers.4.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
300
+ "transformer.layers.4.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
301
+ "transformer.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
302
+ "transformer.layers.4.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
303
+ "transformer.layers.4.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
304
+ "transformer.layers.4.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
305
+ "transformer.layers.4.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
306
+ "transformer.layers.4.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
307
+ "transformer.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
308
+ "transformer.layers.5.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
309
+ "transformer.layers.5.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
310
+ "transformer.layers.5.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
311
+ "transformer.layers.5.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
312
+ "transformer.layers.5.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
313
+ "transformer.layers.5.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
314
+ "transformer.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
315
+ "transformer.layers.5.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
316
+ "transformer.layers.5.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
317
+ "transformer.layers.5.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
318
+ "transformer.layers.5.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
319
+ "transformer.layers.5.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
320
+ "transformer.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
321
+ "transformer.layers.6.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
322
+ "transformer.layers.6.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
323
+ "transformer.layers.6.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
324
+ "transformer.layers.6.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
325
+ "transformer.layers.6.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
326
+ "transformer.layers.6.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
327
+ "transformer.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
328
+ "transformer.layers.6.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
329
+ "transformer.layers.6.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
330
+ "transformer.layers.6.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
331
+ "transformer.layers.6.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
332
+ "transformer.layers.6.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
333
+ "transformer.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
334
+ "transformer.layers.7.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
335
+ "transformer.layers.7.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
336
+ "transformer.layers.7.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
337
+ "transformer.layers.7.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
338
+ "transformer.layers.7.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
339
+ "transformer.layers.7.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
340
+ "transformer.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
341
+ "transformer.layers.7.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
342
+ "transformer.layers.7.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
343
+ "transformer.layers.7.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
344
+ "transformer.layers.7.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
345
+ "transformer.layers.7.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
346
+ "transformer.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
347
+ "transformer.layers.8.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
348
+ "transformer.layers.8.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
349
+ "transformer.layers.8.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
350
+ "transformer.layers.8.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
351
+ "transformer.layers.8.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
352
+ "transformer.layers.8.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
353
+ "transformer.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
354
+ "transformer.layers.8.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
355
+ "transformer.layers.8.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
356
+ "transformer.layers.8.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
357
+ "transformer.layers.8.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
358
+ "transformer.layers.8.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
359
+ "transformer.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
360
+ "transformer.layers.9.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
361
+ "transformer.layers.9.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
362
+ "transformer.layers.9.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
363
+ "transformer.layers.9.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
364
+ "transformer.layers.9.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
365
+ "transformer.layers.9.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
366
+ "transformer.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
367
+ "transformer.layers.9.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
368
+ "transformer.layers.9.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
369
+ "transformer.layers.9.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
370
+ "transformer.layers.9.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
371
+ "transformer.layers.9.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
372
+ "transformer.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
373
+ "transformer.word_embeddings.weight": "pytorch_model-00001-of-00002.bin"
374
+ }
375
+ }
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6780eef001b060016bccd68cafdc28de890a53f520d257594e8ecef19f8fba49
3
+ size 14639
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c78647fa1a01c6858012789e28ec1886bee43ca1a6383a9f454e3d8ee274221
3
+ size 627
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<sop>",
3
+ "eos_token": "</s>",
4
+ "mask_token": "[MASK]",
5
+ "pad_token": "<pad>",
6
+ "unk_token": "<unk>"
7
+ }
tokenization_chatglm.py ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tokenization classes for ChatGLM."""
2
+ import sys
3
+ import unicodedata
4
+ from typing import List, Optional, Union
5
+ from functools import lru_cache
6
+ import os
7
+ import collections
8
+ import re
9
+
10
+ from transformers.tokenization_utils import PreTrainedTokenizer
11
+ from icetk.text_tokenizer import TextTokenizer
12
+ from icetk.utils import auto_create
13
+ import icetk.sentencepiece_model_pb2 as sp_model
14
+ from transformers.utils import logging
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
19
+ "THUDM/chatglm-6b": 2048,
20
+ }
21
+
22
+
23
+ class SPTokenizer:
24
+ def __init__(
25
+ self,
26
+ vocab_file,
27
+ max_blank_length=80,
28
+ byte_fallback=True,
29
+ ):
30
+ assert vocab_file is not None
31
+ self.vocab_file = vocab_file
32
+ self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
33
+ self.max_blank_length = max_blank_length
34
+ self.byte_fallback = byte_fallback
35
+ self.text_tokenizer = self._build_text_tokenizer(encode_special_tokens=False)
36
+ self.special_text_tokenizer = self._build_text_tokenizer(encode_special_tokens=True)
37
+
38
+ @staticmethod
39
+ def _configure_tokenizer(
40
+ text_tokenizer: TextTokenizer,
41
+ special_tokens: List[str],
42
+ max_blank_length: int,
43
+ byte_fallback: bool,
44
+ encode_special_tokens=False,
45
+ ):
46
+ # special token
47
+ special_token_type = 4 if encode_special_tokens else 3 # 3 - CONTROL, 4 - USER_DEFINE
48
+ for token in special_tokens:
49
+ text_tokenizer.proto.pieces.append(
50
+ sp_model.ModelProto.SentencePiece(piece=token, score=0.0, type=special_token_type)
51
+ )
52
+ # whitespaces
53
+ for token in [SPTokenizer.get_tab_token()] + [
54
+ SPTokenizer.get_blank_token(i) for i in range(2, max_blank_length + 1)
55
+ ]:
56
+ text_tokenizer.proto.pieces.append(sp_model.ModelProto.SentencePiece(piece=token, score=0.0, type=4))
57
+ # byte fallback
58
+ if byte_fallback:
59
+ text_tokenizer.proto.trainer_spec.byte_fallback = True
60
+ for i in range(256):
61
+ text_tokenizer.proto.pieces.append(
62
+ sp_model.ModelProto.SentencePiece(piece="<0x{:02X}>".format(i), score=0.0, type=6)
63
+ )
64
+ text_tokenizer.refresh()
65
+
66
+ def _build_text_tokenizer(self, encode_special_tokens=False):
67
+ tokenizer = TextTokenizer(self.vocab_file)
68
+ self._configure_tokenizer(
69
+ tokenizer, self.special_tokens, self.max_blank_length, self.byte_fallback, encode_special_tokens
70
+ )
71
+ return tokenizer
72
+
73
+ def _get_text_tokenizer(self, encode_special_tokens=False):
74
+ if encode_special_tokens:
75
+ return self.special_text_tokenizer
76
+ else:
77
+ return self.text_tokenizer
78
+
79
+ @staticmethod
80
+ def get_blank_token(length: int):
81
+ assert length >= 2
82
+ return f"<|blank_{length}|>"
83
+
84
+ @staticmethod
85
+ def get_tab_token():
86
+ return f"<|tab|>"
87
+
88
+ @property
89
+ def num_image_tokens(self):
90
+ return 20000
91
+
92
+ @property
93
+ def num_text_tokens(self):
94
+ return self.text_tokenizer.num_tokens
95
+
96
+ @property
97
+ def num_tokens(self):
98
+ return self.num_image_tokens + self.num_text_tokens
99
+
100
+ @staticmethod
101
+ def _encode_whitespaces(text: str, max_len: int = 80):
102
+ text = text.replace("\t", SPTokenizer.get_tab_token())
103
+ for i in range(max_len, 1, -1):
104
+ text = text.replace(" " * i, SPTokenizer.get_blank_token(i))
105
+ return text
106
+
107
+ def _preprocess(self, text: str, linebreak=True, whitespaces=True):
108
+ if linebreak:
109
+ text = text.replace("\n", "<n>")
110
+ if whitespaces:
111
+ text = self._encode_whitespaces(text, max_len=self.max_blank_length)
112
+ return text
113
+
114
+ def encode(
115
+ self, text: str, linebreak=True, whitespaces=True, special_tokens=False, add_dummy_prefix=True
116
+ ) -> List[int]:
117
+ """
118
+ @param text: Text to encode.
119
+ @param linebreak: Whether to encode newline (\n) in text.
120
+ @param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
121
+ @param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
122
+ @param add_dummy_prefix: Whether to add dummy blank space in the beginning.
123
+ """
124
+ text = self._preprocess(text, linebreak, whitespaces)
125
+ if not add_dummy_prefix:
126
+ text = "<n>" + text
127
+ tmp = self._get_text_tokenizer(encode_special_tokens=special_tokens).encode(text)
128
+ tokens = [x + self.num_image_tokens for x in tmp]
129
+ return tokens if add_dummy_prefix else tokens[2:]
130
+
131
+ def decode(self, text_ids: List[int], special_tokens=False) -> str:
132
+ ids = [int(_id) - self.num_image_tokens for _id in text_ids]
133
+ ids = [_id for _id in ids if _id >= 0]
134
+ text = self._get_text_tokenizer(encode_special_tokens=special_tokens).decode(ids)
135
+ text = text.replace("<n>", "\n")
136
+ text = text.replace(SPTokenizer.get_tab_token(), "\t")
137
+ for i in range(2, self.max_blank_length + 1):
138
+ text = text.replace(self.get_blank_token(i), " " * i)
139
+ return text
140
+
141
+ def tokenize(
142
+ self, text: str, linebreak=True, whitespaces=True, special_tokens=False, add_dummy_prefix=True
143
+ ) -> List[str]:
144
+ """
145
+ @param text: Text to encode.
146
+ @param linebreak: Whether to encode newline (\n) in text.
147
+ @param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
148
+ @param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
149
+ @param add_dummy_prefix: Whether to add dummy blank space in the beginning.
150
+ """
151
+ text = self._preprocess(text, linebreak, whitespaces)
152
+ if not add_dummy_prefix:
153
+ text = "<n>" + text
154
+ tokens = self._get_text_tokenizer(encode_special_tokens=special_tokens).tokenize(text)
155
+ return tokens if add_dummy_prefix else tokens[2:]
156
+
157
+ def __getitem__(self, x: Union[int, str]):
158
+ if isinstance(x, int):
159
+ if x < self.num_image_tokens:
160
+ return "<image_{}>".format(x)
161
+ else:
162
+ return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens)
163
+ elif isinstance(x, str):
164
+ if x.startswith("<image_") and x.endswith(">") and x[7:-1].isdigit():
165
+ return int(x[7:-1])
166
+ else:
167
+ return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens
168
+ else:
169
+ raise ValueError("The key should be str or int.")
170
+
171
+
172
+ class ChatGLMTokenizer(PreTrainedTokenizer):
173
+ """
174
+ Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding.
175
+
176
+ Args:
177
+ vocab_file (`str`):
178
+ Path to the vocabulary file.
179
+ """
180
+
181
+ vocab_files_names = {"vocab_file": "ice_text.model"}
182
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
183
+ model_input_names = ["input_ids"]
184
+
185
+ def __init__(
186
+ self,
187
+ vocab_file,
188
+ do_lower_case=False,
189
+ remove_space=False,
190
+ bos_token='sop',
191
+ eos_token='eos',
192
+ eop_token='eop',
193
+ mask_token='[MASK]',
194
+ gmask_token='[gMASK]',
195
+ padding_side="left",
196
+ **kwargs
197
+ ) -> None:
198
+ super().__init__(
199
+ do_lower_case=do_lower_case,
200
+ remove_space=remove_space,
201
+ padding_side=padding_side,
202
+ **kwargs
203
+ )
204
+
205
+ self.do_lower_case = do_lower_case
206
+ self.remove_space = remove_space
207
+ self.vocab_file = vocab_file
208
+
209
+ self.bos_token = bos_token
210
+ self.eos_token = eos_token
211
+ self.eop_token = eop_token
212
+ self.mask_token = mask_token
213
+ self.gMASK_token = gmask_token
214
+
215
+ self.sp_tokenizer = SPTokenizer(vocab_file)
216
+
217
+ """ Initialisation """
218
+
219
+ @property
220
+ def eop_token_id(self) -> Optional[int]:
221
+ """
222
+ `Optional[int]`: Id of the end of sentence token in the vocabulary. Returns `None` if the token has not been
223
+ set.
224
+ """
225
+ if self.eop_token is None:
226
+ return None
227
+ return self.convert_tokens_to_ids(self.eop_token)
228
+
229
+ @property
230
+ def vocab_size(self):
231
+ """ Returns vocab size """
232
+ return self.sp_tokenizer.num_tokens
233
+
234
+ def get_vocab(self):
235
+ """ Returns vocab as a dict """
236
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
237
+ vocab.update(self.added_tokens_encoder)
238
+ return vocab
239
+
240
+ def preprocess_text(self, inputs):
241
+ if self.remove_space:
242
+ outputs = " ".join(inputs.strip().split())
243
+ else:
244
+ outputs = inputs
245
+
246
+ if self.do_lower_case:
247
+ outputs = outputs.lower()
248
+
249
+ return outputs
250
+
251
+ def _tokenize(self, text, **kwargs):
252
+ """ Returns a tokenized string. """
253
+ text = self.preprocess_text(text)
254
+
255
+ seq = self.sp_tokenizer.tokenize(text)
256
+
257
+ return seq
258
+
259
+ def decode(
260
+ self,
261
+ token_ids: Union[List[int], List[List[int]]],
262
+ skip_special_tokens: bool = False,
263
+ clean_up_tokenization_spaces: bool = True,
264
+ spaces_between_special_tokens: bool = True,
265
+ **kwargs
266
+ ) -> str:
267
+ if isinstance(token_ids[0], list):
268
+ tokens = []
269
+ for single_token_ids in token_ids:
270
+ if self.pad_token_id in single_token_ids: # remove pad
271
+ single_token_ids = list(filter((self.pad_token_id).__ne__, single_token_ids))
272
+ tokens.append(self.sp_tokenizer.decode(single_token_ids))
273
+ return (tokens)
274
+ else:
275
+ if self.pad_token_id in token_ids: # remove pad
276
+ token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
277
+ return self.sp_tokenizer.decode(token_ids)
278
+
279
+ def _convert_token_to_id(self, token):
280
+ """ Converts a token (str) in an id using the vocab. """
281
+ return self.sp_tokenizer[token]
282
+
283
+ def _convert_id_to_token(self, index):
284
+ """Converts an index (integer) in a token (str) using the vocab."""
285
+ return self.sp_tokenizer[index]
286
+
287
+ def save_vocabulary(self, save_directory, filename_prefix=None):
288
+ """
289
+ Save the vocabulary and special tokens file to a directory.
290
+
291
+ Args:
292
+ save_directory (`str`):
293
+ The directory in which to save the vocabulary.
294
+ filename_prefix (`str`, *optional*):
295
+ An optional prefix to add to the named of the saved files.
296
+
297
+ Returns:
298
+ `Tuple(str)`: Paths to the files saved.
299
+ """
300
+ if os.path.isdir(save_directory):
301
+ vocab_file = os.path.join(
302
+ save_directory, self.vocab_files_names["vocab_file"]
303
+ )
304
+ else:
305
+ vocab_file = save_directory
306
+
307
+ with open(self.vocab_file, 'rb') as fin:
308
+ proto_str = fin.read()
309
+
310
+ with open(vocab_file, "wb") as writer:
311
+ writer.write(proto_str)
312
+
313
+ return (vocab_file,)
314
+
315
+ def build_inputs_with_special_tokens(
316
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
317
+ ) -> List[int]:
318
+ """
319
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
320
+ adding special tokens. A BERT sequence has the following format:
321
+
322
+ - single sequence: `[CLS] X [SEP]`
323
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
324
+
325
+ Args:
326
+ token_ids_0 (`List[int]`):
327
+ List of IDs to which the special tokens will be added.
328
+ token_ids_1 (`List[int]`, *optional*):
329
+ Optional second list of IDs for sequence pairs.
330
+
331
+ Returns:
332
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
333
+ """
334
+ if token_ids_1 is not None:
335
+ token_ids_0 += token_ids_1
336
+ mask_ids = self.sp_tokenizer[self.mask_token]
337
+ gmask_ids = self.sp_tokenizer[self.gMASK_token]
338
+ if mask_ids not in token_ids_0 and gmask_ids not in token_ids_0:
339
+ token_ids_0 += [gmask_ids]
340
+
341
+ if token_ids_0[-1] != mask_ids and token_ids_0[-1] != gmask_ids:
342
+ token_ids_0 += [self.sp_tokenizer[self.eos_token]]
343
+
344
+ token_ids_0 += [self.sp_tokenizer[self.bos_token]]
345
+
346
+ return token_ids_0
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "tokenization_chatglm.ChatGLMTokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "do_lower_case": false,
9
+ "model_max_length": 1000000000000000019884624838656,
10
+ "pad_token": "<pad>",
11
+ "padding_side": "left",
12
+ "remove_space": false,
13
+ "special_tokens_map_file": null,
14
+ "tokenizer_class": "ChatGLMTokenizer",
15
+ "unk_token": "<unk>"
16
+ }
trainer_state.json ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.0,
5
+ "global_step": 953,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.02,
12
+ "learning_rate": 3.496503496503497e-06,
13
+ "loss": 5.6988,
14
+ "step": 10
15
+ },
16
+ {
17
+ "epoch": 0.04,
18
+ "learning_rate": 6.993006993006994e-06,
19
+ "loss": 5.6631,
20
+ "step": 20
21
+ },
22
+ {
23
+ "epoch": 0.06,
24
+ "learning_rate": 1.048951048951049e-05,
25
+ "loss": 5.7268,
26
+ "step": 30
27
+ },
28
+ {
29
+ "epoch": 0.08,
30
+ "learning_rate": 1.3986013986013988e-05,
31
+ "loss": 5.2938,
32
+ "step": 40
33
+ },
34
+ {
35
+ "epoch": 0.1,
36
+ "learning_rate": 1.7482517482517483e-05,
37
+ "loss": 5.0975,
38
+ "step": 50
39
+ },
40
+ {
41
+ "epoch": 0.13,
42
+ "learning_rate": 2.097902097902098e-05,
43
+ "loss": 4.8578,
44
+ "step": 60
45
+ },
46
+ {
47
+ "epoch": 0.15,
48
+ "learning_rate": 2.4475524475524478e-05,
49
+ "loss": 4.3282,
50
+ "step": 70
51
+ },
52
+ {
53
+ "epoch": 0.17,
54
+ "learning_rate": 2.7972027972027976e-05,
55
+ "loss": 4.0068,
56
+ "step": 80
57
+ },
58
+ {
59
+ "epoch": 0.19,
60
+ "learning_rate": 3.146853146853147e-05,
61
+ "loss": 3.7421,
62
+ "step": 90
63
+ },
64
+ {
65
+ "epoch": 0.21,
66
+ "learning_rate": 3.4965034965034965e-05,
67
+ "loss": 3.2654,
68
+ "step": 100
69
+ },
70
+ {
71
+ "epoch": 0.23,
72
+ "learning_rate": 3.846153846153846e-05,
73
+ "loss": 3.0331,
74
+ "step": 110
75
+ },
76
+ {
77
+ "epoch": 0.25,
78
+ "learning_rate": 4.195804195804196e-05,
79
+ "loss": 2.8466,
80
+ "step": 120
81
+ },
82
+ {
83
+ "epoch": 0.27,
84
+ "learning_rate": 4.545454545454546e-05,
85
+ "loss": 2.6892,
86
+ "step": 130
87
+ },
88
+ {
89
+ "epoch": 0.29,
90
+ "learning_rate": 4.8951048951048956e-05,
91
+ "loss": 2.7062,
92
+ "step": 140
93
+ },
94
+ {
95
+ "epoch": 0.31,
96
+ "learning_rate": 4.972762645914397e-05,
97
+ "loss": 2.6551,
98
+ "step": 150
99
+ },
100
+ {
101
+ "epoch": 0.34,
102
+ "learning_rate": 4.933852140077821e-05,
103
+ "loss": 2.6632,
104
+ "step": 160
105
+ },
106
+ {
107
+ "epoch": 0.36,
108
+ "learning_rate": 4.894941634241245e-05,
109
+ "loss": 2.7111,
110
+ "step": 170
111
+ },
112
+ {
113
+ "epoch": 0.38,
114
+ "learning_rate": 4.856031128404669e-05,
115
+ "loss": 2.6711,
116
+ "step": 180
117
+ },
118
+ {
119
+ "epoch": 0.4,
120
+ "learning_rate": 4.817120622568094e-05,
121
+ "loss": 2.562,
122
+ "step": 190
123
+ },
124
+ {
125
+ "epoch": 0.42,
126
+ "learning_rate": 4.778210116731518e-05,
127
+ "loss": 2.543,
128
+ "step": 200
129
+ },
130
+ {
131
+ "epoch": 0.44,
132
+ "learning_rate": 4.739299610894942e-05,
133
+ "loss": 2.5899,
134
+ "step": 210
135
+ },
136
+ {
137
+ "epoch": 0.46,
138
+ "learning_rate": 4.700389105058366e-05,
139
+ "loss": 2.5576,
140
+ "step": 220
141
+ },
142
+ {
143
+ "epoch": 0.48,
144
+ "learning_rate": 4.66147859922179e-05,
145
+ "loss": 2.5863,
146
+ "step": 230
147
+ },
148
+ {
149
+ "epoch": 0.5,
150
+ "learning_rate": 4.622568093385214e-05,
151
+ "loss": 2.4993,
152
+ "step": 240
153
+ },
154
+ {
155
+ "epoch": 0.52,
156
+ "learning_rate": 4.583657587548638e-05,
157
+ "loss": 2.5329,
158
+ "step": 250
159
+ },
160
+ {
161
+ "epoch": 0.55,
162
+ "learning_rate": 4.544747081712062e-05,
163
+ "loss": 2.5328,
164
+ "step": 260
165
+ },
166
+ {
167
+ "epoch": 0.57,
168
+ "learning_rate": 4.505836575875487e-05,
169
+ "loss": 2.5523,
170
+ "step": 270
171
+ },
172
+ {
173
+ "epoch": 0.59,
174
+ "learning_rate": 4.466926070038911e-05,
175
+ "loss": 2.6414,
176
+ "step": 280
177
+ },
178
+ {
179
+ "epoch": 0.61,
180
+ "learning_rate": 4.428015564202335e-05,
181
+ "loss": 2.5356,
182
+ "step": 290
183
+ },
184
+ {
185
+ "epoch": 0.63,
186
+ "learning_rate": 4.389105058365759e-05,
187
+ "loss": 2.5604,
188
+ "step": 300
189
+ },
190
+ {
191
+ "epoch": 0.65,
192
+ "learning_rate": 4.3501945525291833e-05,
193
+ "loss": 2.5026,
194
+ "step": 310
195
+ },
196
+ {
197
+ "epoch": 0.67,
198
+ "learning_rate": 4.311284046692607e-05,
199
+ "loss": 2.5861,
200
+ "step": 320
201
+ },
202
+ {
203
+ "epoch": 0.69,
204
+ "learning_rate": 4.272373540856031e-05,
205
+ "loss": 2.6518,
206
+ "step": 330
207
+ },
208
+ {
209
+ "epoch": 0.71,
210
+ "learning_rate": 4.233463035019455e-05,
211
+ "loss": 2.4669,
212
+ "step": 340
213
+ },
214
+ {
215
+ "epoch": 0.73,
216
+ "learning_rate": 4.19455252918288e-05,
217
+ "loss": 2.4614,
218
+ "step": 350
219
+ },
220
+ {
221
+ "epoch": 0.76,
222
+ "learning_rate": 4.155642023346304e-05,
223
+ "loss": 2.5185,
224
+ "step": 360
225
+ },
226
+ {
227
+ "epoch": 0.78,
228
+ "learning_rate": 4.116731517509728e-05,
229
+ "loss": 2.5792,
230
+ "step": 370
231
+ },
232
+ {
233
+ "epoch": 0.8,
234
+ "learning_rate": 4.077821011673152e-05,
235
+ "loss": 2.4151,
236
+ "step": 380
237
+ },
238
+ {
239
+ "epoch": 0.82,
240
+ "learning_rate": 4.0389105058365764e-05,
241
+ "loss": 2.5522,
242
+ "step": 390
243
+ },
244
+ {
245
+ "epoch": 0.84,
246
+ "learning_rate": 4e-05,
247
+ "loss": 2.5522,
248
+ "step": 400
249
+ },
250
+ {
251
+ "epoch": 0.86,
252
+ "learning_rate": 3.961089494163424e-05,
253
+ "loss": 2.4389,
254
+ "step": 410
255
+ },
256
+ {
257
+ "epoch": 0.88,
258
+ "learning_rate": 3.922178988326848e-05,
259
+ "loss": 2.3915,
260
+ "step": 420
261
+ },
262
+ {
263
+ "epoch": 0.9,
264
+ "learning_rate": 3.883268482490273e-05,
265
+ "loss": 2.4208,
266
+ "step": 430
267
+ },
268
+ {
269
+ "epoch": 0.92,
270
+ "learning_rate": 3.844357976653697e-05,
271
+ "loss": 2.4861,
272
+ "step": 440
273
+ },
274
+ {
275
+ "epoch": 0.94,
276
+ "learning_rate": 3.805447470817121e-05,
277
+ "loss": 2.4987,
278
+ "step": 450
279
+ },
280
+ {
281
+ "epoch": 0.97,
282
+ "learning_rate": 3.766536964980545e-05,
283
+ "loss": 2.5472,
284
+ "step": 460
285
+ },
286
+ {
287
+ "epoch": 0.99,
288
+ "learning_rate": 3.7276264591439694e-05,
289
+ "loss": 2.5182,
290
+ "step": 470
291
+ },
292
+ {
293
+ "epoch": 1.0,
294
+ "eval_accuracy": 0.5792096979068868,
295
+ "eval_loss": 2.443359375,
296
+ "eval_runtime": 25.0491,
297
+ "eval_samples_per_second": 76.09,
298
+ "eval_steps_per_second": 9.541,
299
+ "step": 476
300
+ },
301
+ {
302
+ "epoch": 1.01,
303
+ "learning_rate": 3.6887159533073934e-05,
304
+ "loss": 2.3115,
305
+ "step": 480
306
+ },
307
+ {
308
+ "epoch": 1.03,
309
+ "learning_rate": 3.649805447470817e-05,
310
+ "loss": 2.3429,
311
+ "step": 490
312
+ },
313
+ {
314
+ "epoch": 1.05,
315
+ "learning_rate": 3.610894941634241e-05,
316
+ "loss": 2.4361,
317
+ "step": 500
318
+ },
319
+ {
320
+ "epoch": 1.07,
321
+ "learning_rate": 3.571984435797666e-05,
322
+ "loss": 2.4135,
323
+ "step": 510
324
+ },
325
+ {
326
+ "epoch": 1.09,
327
+ "learning_rate": 3.53307392996109e-05,
328
+ "loss": 2.3602,
329
+ "step": 520
330
+ },
331
+ {
332
+ "epoch": 1.11,
333
+ "learning_rate": 3.494163424124514e-05,
334
+ "loss": 2.4515,
335
+ "step": 530
336
+ },
337
+ {
338
+ "epoch": 1.13,
339
+ "learning_rate": 3.455252918287938e-05,
340
+ "loss": 2.4394,
341
+ "step": 540
342
+ },
343
+ {
344
+ "epoch": 1.15,
345
+ "learning_rate": 3.4163424124513624e-05,
346
+ "loss": 2.4532,
347
+ "step": 550
348
+ },
349
+ {
350
+ "epoch": 1.18,
351
+ "learning_rate": 3.3774319066147864e-05,
352
+ "loss": 2.4665,
353
+ "step": 560
354
+ },
355
+ {
356
+ "epoch": 1.2,
357
+ "learning_rate": 3.3385214007782103e-05,
358
+ "loss": 2.3228,
359
+ "step": 570
360
+ },
361
+ {
362
+ "epoch": 1.22,
363
+ "learning_rate": 3.299610894941634e-05,
364
+ "loss": 2.3944,
365
+ "step": 580
366
+ },
367
+ {
368
+ "epoch": 1.24,
369
+ "learning_rate": 3.260700389105058e-05,
370
+ "loss": 2.4102,
371
+ "step": 590
372
+ },
373
+ {
374
+ "epoch": 1.26,
375
+ "learning_rate": 3.221789883268483e-05,
376
+ "loss": 2.4339,
377
+ "step": 600
378
+ },
379
+ {
380
+ "epoch": 1.28,
381
+ "learning_rate": 3.182879377431907e-05,
382
+ "loss": 2.3893,
383
+ "step": 610
384
+ },
385
+ {
386
+ "epoch": 1.3,
387
+ "learning_rate": 3.143968871595331e-05,
388
+ "loss": 2.3751,
389
+ "step": 620
390
+ },
391
+ {
392
+ "epoch": 1.32,
393
+ "learning_rate": 3.105058365758755e-05,
394
+ "loss": 2.3861,
395
+ "step": 630
396
+ },
397
+ {
398
+ "epoch": 1.34,
399
+ "learning_rate": 3.0661478599221794e-05,
400
+ "loss": 2.4282,
401
+ "step": 640
402
+ },
403
+ {
404
+ "epoch": 1.36,
405
+ "learning_rate": 3.027237354085603e-05,
406
+ "loss": 2.3462,
407
+ "step": 650
408
+ },
409
+ {
410
+ "epoch": 1.39,
411
+ "learning_rate": 2.9883268482490273e-05,
412
+ "loss": 2.3599,
413
+ "step": 660
414
+ },
415
+ {
416
+ "epoch": 1.41,
417
+ "learning_rate": 2.9494163424124516e-05,
418
+ "loss": 2.4088,
419
+ "step": 670
420
+ },
421
+ {
422
+ "epoch": 1.43,
423
+ "learning_rate": 2.910505836575876e-05,
424
+ "loss": 2.3874,
425
+ "step": 680
426
+ },
427
+ {
428
+ "epoch": 1.45,
429
+ "learning_rate": 2.8715953307392995e-05,
430
+ "loss": 2.484,
431
+ "step": 690
432
+ },
433
+ {
434
+ "epoch": 1.47,
435
+ "learning_rate": 2.832684824902724e-05,
436
+ "loss": 2.3859,
437
+ "step": 700
438
+ },
439
+ {
440
+ "epoch": 1.49,
441
+ "learning_rate": 2.793774319066148e-05,
442
+ "loss": 2.3496,
443
+ "step": 710
444
+ },
445
+ {
446
+ "epoch": 1.51,
447
+ "learning_rate": 2.7548638132295724e-05,
448
+ "loss": 2.5695,
449
+ "step": 720
450
+ },
451
+ {
452
+ "epoch": 1.53,
453
+ "learning_rate": 2.715953307392996e-05,
454
+ "loss": 2.3911,
455
+ "step": 730
456
+ },
457
+ {
458
+ "epoch": 1.55,
459
+ "learning_rate": 2.6770428015564204e-05,
460
+ "loss": 2.4357,
461
+ "step": 740
462
+ },
463
+ {
464
+ "epoch": 1.57,
465
+ "learning_rate": 2.6381322957198447e-05,
466
+ "loss": 2.4545,
467
+ "step": 750
468
+ },
469
+ {
470
+ "epoch": 1.59,
471
+ "learning_rate": 2.599221789883269e-05,
472
+ "loss": 2.3346,
473
+ "step": 760
474
+ },
475
+ {
476
+ "epoch": 1.62,
477
+ "learning_rate": 2.5603112840466926e-05,
478
+ "loss": 2.3698,
479
+ "step": 770
480
+ },
481
+ {
482
+ "epoch": 1.64,
483
+ "learning_rate": 2.521400778210117e-05,
484
+ "loss": 2.4074,
485
+ "step": 780
486
+ },
487
+ {
488
+ "epoch": 1.66,
489
+ "learning_rate": 2.4824902723735412e-05,
490
+ "loss": 2.5796,
491
+ "step": 790
492
+ },
493
+ {
494
+ "epoch": 1.68,
495
+ "learning_rate": 2.443579766536965e-05,
496
+ "loss": 2.4123,
497
+ "step": 800
498
+ },
499
+ {
500
+ "epoch": 1.7,
501
+ "learning_rate": 2.4046692607003894e-05,
502
+ "loss": 2.3395,
503
+ "step": 810
504
+ },
505
+ {
506
+ "epoch": 1.72,
507
+ "learning_rate": 2.3657587548638134e-05,
508
+ "loss": 2.3278,
509
+ "step": 820
510
+ },
511
+ {
512
+ "epoch": 1.74,
513
+ "learning_rate": 2.3268482490272377e-05,
514
+ "loss": 2.4002,
515
+ "step": 830
516
+ },
517
+ {
518
+ "epoch": 1.76,
519
+ "learning_rate": 2.2879377431906616e-05,
520
+ "loss": 2.3189,
521
+ "step": 840
522
+ },
523
+ {
524
+ "epoch": 1.78,
525
+ "learning_rate": 2.2490272373540856e-05,
526
+ "loss": 2.4051,
527
+ "step": 850
528
+ },
529
+ {
530
+ "epoch": 1.8,
531
+ "learning_rate": 2.21011673151751e-05,
532
+ "loss": 2.3595,
533
+ "step": 860
534
+ },
535
+ {
536
+ "epoch": 1.83,
537
+ "learning_rate": 2.171206225680934e-05,
538
+ "loss": 2.3412,
539
+ "step": 870
540
+ },
541
+ {
542
+ "epoch": 1.85,
543
+ "learning_rate": 2.132295719844358e-05,
544
+ "loss": 2.3462,
545
+ "step": 880
546
+ },
547
+ {
548
+ "epoch": 1.87,
549
+ "learning_rate": 2.093385214007782e-05,
550
+ "loss": 2.3828,
551
+ "step": 890
552
+ },
553
+ {
554
+ "epoch": 1.89,
555
+ "learning_rate": 2.054474708171206e-05,
556
+ "loss": 2.3796,
557
+ "step": 900
558
+ },
559
+ {
560
+ "epoch": 1.91,
561
+ "learning_rate": 2.0155642023346304e-05,
562
+ "loss": 2.2987,
563
+ "step": 910
564
+ },
565
+ {
566
+ "epoch": 1.93,
567
+ "learning_rate": 1.9766536964980543e-05,
568
+ "loss": 2.3002,
569
+ "step": 920
570
+ },
571
+ {
572
+ "epoch": 1.95,
573
+ "learning_rate": 1.9377431906614786e-05,
574
+ "loss": 2.4586,
575
+ "step": 930
576
+ },
577
+ {
578
+ "epoch": 1.97,
579
+ "learning_rate": 1.8988326848249026e-05,
580
+ "loss": 2.4058,
581
+ "step": 940
582
+ },
583
+ {
584
+ "epoch": 1.99,
585
+ "learning_rate": 1.859922178988327e-05,
586
+ "loss": 2.3934,
587
+ "step": 950
588
+ },
589
+ {
590
+ "epoch": 2.0,
591
+ "eval_accuracy": 0.5807643452808307,
592
+ "eval_loss": 2.384765625,
593
+ "eval_runtime": 25.0512,
594
+ "eval_samples_per_second": 76.084,
595
+ "eval_steps_per_second": 9.54,
596
+ "step": 953
597
+ }
598
+ ],
599
+ "max_steps": 1428,
600
+ "num_train_epochs": 3,
601
+ "total_flos": 5.11391603907625e+16,
602
+ "trial_name": null,
603
+ "trial_params": null
604
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:164c847d97799194aedc004b3e7b6a4da88a9408da16201d2799d8e761fd15e2
3
+ size 3515