File size: 7,668 Bytes
a85c378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29954ec
 
 
 
c71f42d
29954ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fde337f
 
 
29954ec
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
---
license: apache-2.0
metrics:
  - precision
base_model:
  - Ultralytics/YOLO11s
tags:
  - object_detection
model-index:
  - name: Object Detection Model
    results:
      - task:
          type: object-detection
        dataset:
          name: Custom Object Dataset
          type: object-detection
        metrics:
          - name: Box(P)
            type: precision
            value: 0.904
          - name: R
            type: recall
            value: 0.87
          - name: mAP50
            type: mAP
            value: 0.918
          - name: mAP50-95
            type: mAP
            value: 0.671
        details:
          - class:
              name: all
              images: 92
              instances: 2568
              metrics:
                - Box(P): 0.904
                - R: 0.87
                - mAP50: 0.918
                - mAP50-95: 0.671
          - class:
              name: range
              images: 82
              instances: 82
              metrics:
                - Box(P): 0.928
                - R: 0.938
                - mAP50: 0.957
                - mAP50-95: 0.701
          - class:
              name: entry_door
              images: 92
              instances: 821
              metrics:
                - Box(P): 0.941
                - R: 0.944
                - mAP50: 0.966
                - mAP50-95: 0.704
          - class:
              name: kitchen_sink
              images: 80
              instances: 91
              metrics:
                - Box(P): 0.863
                - R: 0.828
                - mAP50: 0.917
                - mAP50-95: 0.662
          - class:
              name: bathroom_sink
              images: 89
              instances: 240
              metrics:
                - Box(P): 0.909
                - R: 0.85
                - mAP50: 0.929
                - mAP50-95: 0.64
          - class:
              name: toilet
              images: 90
              instances: 188
              metrics:
                - Box(P): 0.927
                - R: 0.904
                - mAP50: 0.96
                - mAP50-95: 0.667
          - class:
              name: double_folding_door
              images: 19
              instances: 37
              metrics:
                - Box(P): 0.867
                - R: 0.702
                - mAP50: 0.828
                - mAP50-95: 0.594
          - class:
              name: window
              images: 88
              instances: 669
              metrics:
                - Box(P): 0.871
                - R: 0.9
                - mAP50: 0.905
                - mAP50-95: 0.582
          - class:
              name: shower
              images: 61
              instances: 70
              metrics:
                - Box(P): 0.907
                - R: 0.957
                - mAP50: 0.947
                - mAP50-95: 0.778
          - class:
              name: bathtub
              images: 71
              instances: 103
              metrics:
                - Box(P): 0.947
                - R: 0.874
                - mAP50: 0.933
                - mAP50-95: 0.793
          - class:
              name: single_folding_door
              images: 55
              instances: 144
              metrics:
                - Box(P): 0.877
                - R: 0.839
                - mAP50: 0.9
                - mAP50-95: 0.647
          - class:
              name: dishwasher
              images: 49
              instances: 54
              metrics:
                - Box(P): 0.912
                - R: 0.833
                - mAP50: 0.863
                - mAP50-95: 0.568
          - class:
              name: refrigerator
              images: 66
              instances: 69
              metrics:
                - Box(P): 0.901
                - R: 0.87
                - mAP50: 0.916
                - mAP50-95: 0.712
        source:
          name: Custom Object Detection Results
          url: https://example.com/custom-object-detection-results
---

# YOLO11s Auto-CAD Detection Model Card

## Model Overview
The YOLO11s Auto-CAD detection model is a computer vision model trained to detect various objects related to AutoCAD layouts, such as kitchen sinks, toilets, windows, and other fixtures. This model is based on the YOLO11s architecture and fine-tuned for Auto-CAD-specific object detection tasks. The model is optimized for real-time inference on both GPU and CPU platforms.

### Version Information
- **Model Version**: YOLO11
- **Ultralytics Version**: 8.3.8
- **Python Version**: 3.9.7
- **Torch Version**: 2.3.1+cu118
- **CUDA Version**: 11.8 (for GPU use)
- **Hardware**: NVIDIA GeForce RTX 4060 Laptop GPU, AMD Ryzen 7 7745HX (for CPU evaluation)
- **Model Architecture**: YOLO (You Only Look Once) v5 (fused)

## Model Details

- **Layers**: 238
- **Parameters**: 9,417,444
- **GFLOPs**: 21.3
- **Training Type**: Supervised learning
- **Target Platform**: GPUs (NVIDIA RTX series) and CPUs (AMD Ryzen)

### Supported Tasks
- Object detection on AutoCAD layouts
- Classification and localization of various CAD objects

## Dataset
The model was trained on a dataset of AutoCAD object instances, including:
- **Range**
- **Entry Door**
- **Kitchen Sink**
- **Bathroom Sink**
- **Toilet**
- **Double Folding Door**
- **Window**
- **Shower**
- **Bathtub**
- **Single Folding Door**
- **Dishwasher**
- **Refrigerator**

Each object class has a varying number of images and instances in the training set.

## Performance Metrics

| Class              | Precision | Recall | mAP50 | mAP50-95 |
|--------------------|-----------|--------|-------|----------|
| all                | 0.904     | 0.87   | 0.918 | 0.671    |
| range              | 0.928     | 0.938  | 0.957 | 0.701    |
| entry_door         | 0.941     | 0.944  | 0.966 | 0.704    |
| kitchen_sink       | 0.863     | 0.828  | 0.917 | 0.662    |
| bathroom_sink      | 0.909     | 0.85   | 0.929 | 0.64     |
| toilet             | 0.927     | 0.904  | 0.96  | 0.667    |
| double_folding_door| 0.867     | 0.702  | 0.828 | 0.594    |
| window             | 0.871     | 0.9    | 0.905 | 0.582    |
| shower             | 0.907     | 0.957  | 0.947 | 0.778    |
| bathtub            | 0.947     | 0.874  | 0.933 | 0.793    |
| single_folding_door| 0.877    | 0.839  | 0.9   | 0.647    |
| dishwasher         | 0.912     | 0.833  | 0.863 | 0.568    |
| refrigerator       | 0.901     | 0.87   | 0.916 | 0.712    |

## Inference Speed
- **Preprocess Time**: 0.2ms per image
- **Inference Time**: 13.4ms per image
- **Postprocess Time**: 1.5ms per image

These times may vary depending on the hardware platform and the number of objects in the input image.

## Usage

### Requirements
- Python 3.9.7
- PyTorch 2.3.1+cu118
- CUDA-enabled GPU (optional but recommended for faster inference)
- Ultralytics YOLO package 8.3.8

### Installation
To use the model, install the necessary dependencies:

```bash
pip install torch==2.3.1+cu118
pip install ultralytics
```

## Demo
You can try the model in action through this interactive demo:  
[**YOLO11 Auto-CAD Detection Demo**](https://huggingface.co/spaces/sabaridsnfuji/Symbol_SpottingonDigital_Architectural_FloorPlans_Using_objectdetection)

## Notes
- The model supports various object categories in AutoCAD drawings, such as doors, sinks, bathtubs, etc.
- Performance metrics like mAP50 and mAP50-95 indicate the accuracy of detection and classification across multiple object categories.
- This model is optimized for both GPU and CPU, with higher performance on GPUs. The model can be used for real-time detection applications requiring accurate localization of AutoCAD objects.

---