File size: 7,668 Bytes
a85c378 29954ec c71f42d 29954ec fde337f 29954ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
---
license: apache-2.0
metrics:
- precision
base_model:
- Ultralytics/YOLO11s
tags:
- object_detection
model-index:
- name: Object Detection Model
results:
- task:
type: object-detection
dataset:
name: Custom Object Dataset
type: object-detection
metrics:
- name: Box(P)
type: precision
value: 0.904
- name: R
type: recall
value: 0.87
- name: mAP50
type: mAP
value: 0.918
- name: mAP50-95
type: mAP
value: 0.671
details:
- class:
name: all
images: 92
instances: 2568
metrics:
- Box(P): 0.904
- R: 0.87
- mAP50: 0.918
- mAP50-95: 0.671
- class:
name: range
images: 82
instances: 82
metrics:
- Box(P): 0.928
- R: 0.938
- mAP50: 0.957
- mAP50-95: 0.701
- class:
name: entry_door
images: 92
instances: 821
metrics:
- Box(P): 0.941
- R: 0.944
- mAP50: 0.966
- mAP50-95: 0.704
- class:
name: kitchen_sink
images: 80
instances: 91
metrics:
- Box(P): 0.863
- R: 0.828
- mAP50: 0.917
- mAP50-95: 0.662
- class:
name: bathroom_sink
images: 89
instances: 240
metrics:
- Box(P): 0.909
- R: 0.85
- mAP50: 0.929
- mAP50-95: 0.64
- class:
name: toilet
images: 90
instances: 188
metrics:
- Box(P): 0.927
- R: 0.904
- mAP50: 0.96
- mAP50-95: 0.667
- class:
name: double_folding_door
images: 19
instances: 37
metrics:
- Box(P): 0.867
- R: 0.702
- mAP50: 0.828
- mAP50-95: 0.594
- class:
name: window
images: 88
instances: 669
metrics:
- Box(P): 0.871
- R: 0.9
- mAP50: 0.905
- mAP50-95: 0.582
- class:
name: shower
images: 61
instances: 70
metrics:
- Box(P): 0.907
- R: 0.957
- mAP50: 0.947
- mAP50-95: 0.778
- class:
name: bathtub
images: 71
instances: 103
metrics:
- Box(P): 0.947
- R: 0.874
- mAP50: 0.933
- mAP50-95: 0.793
- class:
name: single_folding_door
images: 55
instances: 144
metrics:
- Box(P): 0.877
- R: 0.839
- mAP50: 0.9
- mAP50-95: 0.647
- class:
name: dishwasher
images: 49
instances: 54
metrics:
- Box(P): 0.912
- R: 0.833
- mAP50: 0.863
- mAP50-95: 0.568
- class:
name: refrigerator
images: 66
instances: 69
metrics:
- Box(P): 0.901
- R: 0.87
- mAP50: 0.916
- mAP50-95: 0.712
source:
name: Custom Object Detection Results
url: https://example.com/custom-object-detection-results
---
# YOLO11s Auto-CAD Detection Model Card
## Model Overview
The YOLO11s Auto-CAD detection model is a computer vision model trained to detect various objects related to AutoCAD layouts, such as kitchen sinks, toilets, windows, and other fixtures. This model is based on the YOLO11s architecture and fine-tuned for Auto-CAD-specific object detection tasks. The model is optimized for real-time inference on both GPU and CPU platforms.
### Version Information
- **Model Version**: YOLO11
- **Ultralytics Version**: 8.3.8
- **Python Version**: 3.9.7
- **Torch Version**: 2.3.1+cu118
- **CUDA Version**: 11.8 (for GPU use)
- **Hardware**: NVIDIA GeForce RTX 4060 Laptop GPU, AMD Ryzen 7 7745HX (for CPU evaluation)
- **Model Architecture**: YOLO (You Only Look Once) v5 (fused)
## Model Details
- **Layers**: 238
- **Parameters**: 9,417,444
- **GFLOPs**: 21.3
- **Training Type**: Supervised learning
- **Target Platform**: GPUs (NVIDIA RTX series) and CPUs (AMD Ryzen)
### Supported Tasks
- Object detection on AutoCAD layouts
- Classification and localization of various CAD objects
## Dataset
The model was trained on a dataset of AutoCAD object instances, including:
- **Range**
- **Entry Door**
- **Kitchen Sink**
- **Bathroom Sink**
- **Toilet**
- **Double Folding Door**
- **Window**
- **Shower**
- **Bathtub**
- **Single Folding Door**
- **Dishwasher**
- **Refrigerator**
Each object class has a varying number of images and instances in the training set.
## Performance Metrics
| Class | Precision | Recall | mAP50 | mAP50-95 |
|--------------------|-----------|--------|-------|----------|
| all | 0.904 | 0.87 | 0.918 | 0.671 |
| range | 0.928 | 0.938 | 0.957 | 0.701 |
| entry_door | 0.941 | 0.944 | 0.966 | 0.704 |
| kitchen_sink | 0.863 | 0.828 | 0.917 | 0.662 |
| bathroom_sink | 0.909 | 0.85 | 0.929 | 0.64 |
| toilet | 0.927 | 0.904 | 0.96 | 0.667 |
| double_folding_door| 0.867 | 0.702 | 0.828 | 0.594 |
| window | 0.871 | 0.9 | 0.905 | 0.582 |
| shower | 0.907 | 0.957 | 0.947 | 0.778 |
| bathtub | 0.947 | 0.874 | 0.933 | 0.793 |
| single_folding_door| 0.877 | 0.839 | 0.9 | 0.647 |
| dishwasher | 0.912 | 0.833 | 0.863 | 0.568 |
| refrigerator | 0.901 | 0.87 | 0.916 | 0.712 |
## Inference Speed
- **Preprocess Time**: 0.2ms per image
- **Inference Time**: 13.4ms per image
- **Postprocess Time**: 1.5ms per image
These times may vary depending on the hardware platform and the number of objects in the input image.
## Usage
### Requirements
- Python 3.9.7
- PyTorch 2.3.1+cu118
- CUDA-enabled GPU (optional but recommended for faster inference)
- Ultralytics YOLO package 8.3.8
### Installation
To use the model, install the necessary dependencies:
```bash
pip install torch==2.3.1+cu118
pip install ultralytics
```
## Demo
You can try the model in action through this interactive demo:
[**YOLO11 Auto-CAD Detection Demo**](https://huggingface.co/spaces/sabaridsnfuji/Symbol_SpottingonDigital_Architectural_FloorPlans_Using_objectdetection)
## Notes
- The model supports various object categories in AutoCAD drawings, such as doors, sinks, bathtubs, etc.
- Performance metrics like mAP50 and mAP50-95 indicate the accuracy of detection and classification across multiple object categories.
- This model is optimized for both GPU and CPU, with higher performance on GPUs. The model can be used for real-time detection applications requiring accurate localization of AutoCAD objects.
---
|